Effects of Slag Applications and Salinity Stress on Greenhouse Durum Wheat (Triticum durum Desf.) Plants
Abstract
The search for sustainable practices to increase productivity is a fundamental need in current agriculture. Steel slag has been studied for its potential use in agriculture. These substances present a great ability of agricultural applications since they are rich in nutrients. The effect of steel slag-based fertilizer was investigated on greenhouse durum wheat cultivar under salt-stress conditions. Two doses of slag: 10 g slag/ kg soil (D1) and 20 g slag/ kg soil (D2) were evaluated under no salt-stress (0 mM NaCl) and salt-stress conditions (100 mM NaCl) for salinity stress mitigation. Morpho-physiological and biochemical parameters of wheat were measured and compared to the different treatments. Exposure of wheat to salinity decreased its biomass, stomatal conductance, efficiency of photosystem II, and protein content, but it increased total soluble sugars, hydrogen peroxide (H2O2), and malondialdehyde (MDA) contents. Amended plants with 10 g slag/ kg soil (D1) led to a significant improvement in biomass with an increase of shoot and root dry weights (133% and 400% respectively), stomatal conductance (22 %), soluble sugars (14 %), and protein content (158%) under saline conditions compared to the control treatment with 0 g slag/ kg soil (C), thus indicating a positive influence on durum wheat plants. Soil enrichment with 20 g slag/kg soil (D2) decreased plant growth parameters and presented the highest levels of H2O2 and MDA contents compared to the control and treatment (D1) after three months of cultivation under salt stress. This study supports the hypothesis of the application of slag at lower dose, which improves productivity of durum wheat and mitigate salinity stress.
Downloads
Metrics
PlumX Statistics
References
2. Ahmad, P., Hashem, A., Abd-Allah, E.F., Alqarawi, A.A., John, R., Egamberdieva, D., & Gucel, S. (2015). Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense system. Front. Plant Sci. 6: 868. DOI: 10.3389/fpls.2015.00868
3. Alqarawi, A.A., Abd Allah, E.F., & Hashem, A. (2014). Alleviation of salt-induced adverse impact via mycorrhizal fungi in Ephedra Aphylla Forssk. J. Plant Interact. 9: 802–810. https://doi.org/10.1080/17429145.2014.949886
4. A Murkute, A., Sharma, S., & K Singh, S. (2018). Studies on salt stress tolerance of citrus rootstock genotypes with arbuscular mycorrhizal fungi. Horticultural Science, 33(No. 2), 70–76. https://doi.org/10.17221/3742-hortsci
5. Ait-El-Mokhtar, M., Fakhech, A., Ben-Laouane, R., Anli, M., Boutasknit, A., Ait-Rahou, Y., Wahbi, S., & Meddich, A. (2022). Compost as an eco-friendly alternative to mitigate salt-induced effects on growth, nutritional, physiological and biochemical responses of date palm. International Journal of Recycling of Organic Waste in Agriculture 11, 85–100. https://doi.org/10.30486/IJROWA.2021.1927528.1233.
6. Anli, M., Baslam, M., Tahiri, A., Raklami, A., Symanczik, S., Boutasknit, A., Ait-El-Mokhtar, M., Ben-Laouane, R., Toubali, S., Ait Rahou, Y., Ait Chitt, M., Oufdou, K., Mitsui, T., Hafidi, M., & Meddich, A. (2020). Biofertilizers as Strategies to Improve Photosynthetic Apparatus, Growth, and Drought Stress Tolerance in the Date Palm. Front. Plant Sci 11. 516818. doi: 10.3389/fpls.2020.516818
7. Arora, N. K. (2019). Impact of climate change on agriculture production and its sustainable solutions. Environmental Sustainability, 2(2), 95–96. https://doi.org/10.1007/s42398-019-00078-w
8. Das, S., Gwon, H. S., Khan, M. I., Jeong, S. T., & Kim, P. J. (2020). Steel slag amendment impacts on soil microbial communities and activities of rice (Oryza sativa L.). Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-63783-1
9. EL Sabagh, A., Islam, M. S., Skalicky, M., Ali Raza, M., Singh, K., Anwar Hossain, M., Hossain, A., Mahboob, W., Iqbal, M. A., Ratnasekera, D., Singhal, R. K., Ahmed, S., Kumari, A., Wasaya, A., Sytar, O., Brestic, M., ÇIG, F., Erman, M., Habib Ur Rahman, M., … Arshad, A. (2021). Salinity Stress in Wheat (Triticum aestivum L.) in the Changing Climate: Adaptation and Management Strategies. Frontiers in Agronomy, 3(July), 1–20. https://doi.org/10.3389/fagro.2021.661932
10. Gao, X., Maruoka, N., Kim, S. joong, Ueda, S., & Kitamura, S. ya. (2015). Dissolution Behavior of Nutrient Elements from Fertilizer Made of Steelmaking Slag, in an Irrigated Paddy Field Environment. Journal of Sustainable Metallurgy, 1(4), 304–313. https://doi.org/10.1007/s40831-015-0030-8
11. Ghisman, V., Muresan, A. C., Buruiana, D. L., & Axente, E. R. (2022). Waste slag benefits for correction of soil acidity. Scientific Reports, 12(1), 1–9. https://doi.org/10.1038/s41598-022-20528-6
12. Hossain, A., Skalicky, M., Brestic, M., Maitra, S., Alam, M. A., Syed, M. A., Hossain, J., Sarkar, S., Saha, S., Bhadra, P., Shankar, T., Bhatt, R., Chaki, A. K., Sabagh, A. E. L., & Islam, T. (2021). Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum l.) under the changing climate. Agronomy, 11(2). https://doi.org/10.3390/agronomy11020241
13. Islam, Z., Tran, Q. T., Koizumi, S., Kato, F., Ito, K., Araki, K. S., & Kubo, M. (2022). Effect of Steel Slag on Soil Fertility and Plant Growth. Journal of Agricultural Chemistry and Environment, 11(03), 209–221. https://doi.org/10.4236/jacen.2022.113014
14. Liang, H., Shi, Q., Li, X., Gao, P., Feng, D., Zhang, X., Lu, Y., Yan, J., Shen, S., Zhao, J., & Ma, W. (2022). Synergistic effects of carbon cycle metabolism and photosynthesis in Chinese cabbage under salt stress. Horticultural Plant Journal, December. https://doi.org/10.1016/j.hpj.2022.09.003
15. Maccaferri, M., Sanguineti, M. C., Donini, P., & Tuberosa, R. (2003). Microsatellite analysis reveals a progressive widening of the genetic basis in the elite durum wheat germplasm. Theoretical and Applied Genetics, 107(5), 783–797. https://doi.org/10.1007/s00122-003-1319-8
16. Negacz, K., Malek, Ž., de Vos, A., & Vellinga, P. (2022). Saline soils worldwide: Identifying the most promising areas for saline agriculture. Journal of Arid Environments, 203(April). https://doi.org/10.1016/j.jaridenv.2022.104775
17. Parihar, P., Singh, S., Singh, R., Singh, V. P., & Prasad, S. M. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research, 22(6), 4056–4075. https://doi.org/10.1007/s11356-014-3739-1
18. Radić, S., Sandev, D., Maldini, K., Vujčić Bok, V., Lepeduš, H., & Domijan, A. M. (2022). Recycling Electric Arc Furnace Slag into Fertilizer: Effects of “Waste Product” on Growth and Physiology of the Common Bean (Phaseolus vulgaris L.). Agronomy, 12(9). https://doi.org/10.3390/agronomy12092218
19. Seal, C. J., Courtin, C. M., Venema, K., & de Vries, J. (2021). Health benefits of whole grain: effects on dietary carbohydrate quality, the gut microbiome, and consequences of processing. Comprehensive Reviews in Food Science and Food Safety, 20(3), 2742–2768. https://doi.org/10.1111/1541-4337.12728
20. Shiferaw, B., Smale, M., Braun, H. J., Duveiller, E., Reynolds, M., & Muricho, G. (2013). Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security, 5(3), 291–317. https://doi.org/10.1007/s12571-013-0263-y
21. Turki, N., Shehzad, T., Harrabi, M., & Okuno, K. (2023). Journal of King Saud University – Science Mapping novel QTLs for tolerance to salt stress at the late vegetative stage in durum wheat ( Triticum durum L .). Journal of King Saud University - Science, 35(2), 102506. https://doi.org/10.1016/j.jksus.2022.102506
22. WANG, X., & CAI, Q. S. (2006). Steel Slag as an Iron Fertilizer for Corn Growth and Soil Improvement in a Pot Experiment1 1 Project supported by the National Natural Science Foundation of China (No. 30270800). Pedosphere, 16(4), 519–524. https://doi.org/10.1016/S1002-0160(06)60083-0
23. Xynias, I. N., Mylonas, I., Korpetis, E. G., & Ninou, E. (n.d.). Agronomy-10-00432.Pdf. Table 1, 1–27.
24. Zahra, N., Al Hinai, M. S., Hafeez, M. B., Rehman, A., Wahid, A., Siddique, K. H. M., & Farooq, M. (2022). Regulation of photosynthesis under salt stress and associated tolerance mechanisms. Plant Physiology and Biochemistry, 178(March), 55–69. https://doi.org/10.1016/j.plaphy.2022.03.003
25. Zhu, D., Luo, F., Zou, R., Liu, J., & Yan, Y. (2021). Integrated physiological and chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses. Journal of Proteomics, 234(August 2020), 104097. https://doi.org/10.1016/j.jprot.2020.104097
Copyright (c) 2023 Farid Errouh, Abdelhamid Aouabe, Ayoub Sadouki, Hassan Chagiri, Hicham Khalisse, Brahim Oudra, Julio Cesar Rodriguez, Salah Er-Raki, Abdelilah Meddich
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.