Effect of Lipid Content on Anaerobic Digestion Process and Microbial Community: Review Study

  • Ali Alhraishawi Department of Civil Engineering, College of Engineering, Misan University, Iraq
  • Sukru Aslan Sivas Cumhuriyet University Department of Environmental Engineering, Sivas, Turkey
Keywords: Anaerobic digestion; lipid content; microbial community, anaerobic co-digestion; methane generation


The indiscriminate release of significant amounts of food waste, fat oil and grease, and sewage sludge (SS) into the environment causes severe contamination in many nations. There are numerous potential treatment methods to cope with organic wastes, but anaerobic digestion is currently widely accepted to handle different kinds of biological waste. One of the pillars supporting anaerobic digester biogas production increase in treatment plants is the use of fats in the wastewater. However, it has been claimed that high-fat wastes, particularly mono-digestion in the anaerobic reactor, inhibit acetoclastic and methanotrophic bacteria delay the formation of gas even more, and overtax the system. The aim of this review is to review several publications that dealt with the effect of LCFs and FOG on AD performance and associated methane production and microbial communities, as well as the mechanism of LCFA generation and its inhibitory effect on anaerobic digestion performance, and also addressed the improvement of system efficiency using co-digestion with lipid wastes.


Download data is not yet available.


Metrics Loading ...

PlumX Statistics


1. Ahmad, A., Ghufran, R., & Wahid, Z. A. (2011). Bioenergy from anaerobic degradation of lipids in palm oil mill effluent. Reviews in Environmental Science and Bio/Technology, 10(4), 353-376.‏ https://doi.org/10.1007/s11157-011-9253-8.
2. Alves, M. M., Pereira, M. A., Sousa, D. Z., Cavaleiro, A. J., Picavet, M., Smidt, H., & Stams, A. J. (2009). Waste lipids to energy: how to optimize methane production from long‐chain fatty acids (LCFA). Microbial biotechnology, 2(5), 538-550.‏ https://doi.org /10.1111/j.1751-7915.2009.00100.x.
3. Amha, Y. M., Sinha, P., Lagman, J., Gregori, M., & Smith, A. L. (2017). Elucidating microbial community adaptation to anaerobic co-digestion of fats, oils, and grease and food waste. Water research, 123, 277-289.‏ https://doi.org/10.1016/j.watres.2017.06.065.
4. Angelidaki, I., & Ahring, B. K. (1992). Effects of free long-chain fatty acids on thermophilic anaerobic digestion. Applied microbiology and biotechnology, 37(6), 808-812.‏
5. Awe, O. W., Lu, J., Wu, S., Zhao, Y., Nzihou, A., Lyczko, N., & Minh, D. P. (2018). Effect of oil content on biogas production, process performance and stability of food waste anaerobic digestion. Waste and biomass valorization, 9(12), 2295-2306.‏ https://doi.org/10.1007/s12649-017-0179-4.
6. Chen, X., Romano, R. T., & Zhang, R. (2010). Anaerobic digestion of food wastes for biogas production. International Journal of Agricultural and Biological Engineering, 3(4), 61-72.‏ .‏ https://doi.org /10.3965/j.issn.1934-6344.2010.04.0-0.
7. Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: a review. Bioresource technology, 99(10), 4044-4064.‏ https://doi.org/10.1016/j.biortech.2007.01.057.
8. Chipasa, K. B., & Mędrzycka, K. (2006). Behavior of lipids in biological wastewater treatment processes. Journal of industrial microbiology and biotechnology, 33(8), 635-645.‏ 10.1007/s10295-006-0099-y.
9. Cho, H. S., Moon, H. S., Lim, J. Y., & Kim, J. Y. (2013). Effect of long chain fatty acids removal as a pretreatment on the anaerobic digestion of food waste. Journal of Material Cycles and Waste Management, 15(1), 82-89.‏ Click to copy the URI to your clipboard.https://doi.org/10.1007/s10163-012-0092-7
10. Chowdhury, B., Lin, L., Dhar, B. R., Islam, M. N., McCartney, D., & Kumar, A. (2019). Enhanced biomethane recovery from fat, oil, and grease through co-digestion with food waste and addition of conductive materials. Chemosphere, 236, 124362.‏ https://doi.org/10.1016/j.chemosphere.2019.124362
11. Cirne, D. G., Paloumet, X., Björnsson, L., Alves, M. M., & Mattiasson, B. (2007). Anaerobic digestion of lipid-rich waste—effects of lipid concentration. Renewable energy, 32(6), 965-975.‏ https://doi.org/10.1016/j.renene.2006.04.003.
12. Dasa, K. T., Westman, S. Y., Millati, R., Cahyanto, M. N., Taherzadeh, M. J., & Niklasson, C. (2016). Inhibitory effect of long-chain fatty acids on biogas production and the protective effect of membrane bioreactor. BioMed Research International, 2016;2016:7263974.‏ https://doi.org/10.1155/2016/7263974.
13. Davidsson, Å., Lövstedt, C., la Cour Jansen, J., Gruvberger, C., & Aspegren, H. (2008). Co-digestion of grease trap sludge and sewage sludge. Waste Management, 28(6), 986-992.‏ https://doi.org/ 10.1016/j.wasman.2007.03.024.
14. Dehghani, M., Sadatjo, H., Maleknia, H., & Shamsedini, N. (2014). A survey on the removal efficiency of fat, oil and grease in Shiraz Municipal wastewater treatment plant. Jentashapir Journal of Health Research, 5(6).‏ https://doi.org/10.17795/jjhr-26651.
15. Elsamadony, M., Mostafa, A., Fujii, M., Tawfik, A., & Pant, D. (2021). Advances towards understanding long chain fatty acids-induced inhibition and overcoming strategies for efficient anaerobic digestion process. Water Research, 190, 116732.‏ https://doi.org/10.1016/j.watres.2020.116732.
16. Gujer, W., & Zehnder, A. J. (1983). Conversion processes in anaerobic digestion. Water science and technology, 15(8-9), 127-167.‏
17. Hanaki, K., Matsuo, T., & Nagase, M. (1981). Mechanism of inhibition caused by long‐chain fatty acids in anaerobic digestion process. Biotechnology and bioengineering, 23(7), 1591-1610.‏ https://doi.org/10.1002/bit.260230717.
18. He, J., Deng, Y., Li, X., Zhang, Y., Zhu, N., & Yin, X. (2016). A review of process limitations and microbial community in anaerobic digestion of fat, oil, and grease (fog). Res Rev J Microbiol Biotechnol, 5, 39-44.‏
19. Heo, N. H., Park, S. C., Lee, J. S., Kang, H., & Park, D. H. (2003). Single-stage anaerobic codigestion for mixture wastes of simulated Korean food waste and waste activated sludge. In Biotechnology for Fuels and Chemicals (pp. 567-579). Humana Press, Totowa, NJ. https://doi.org/10.1385/abab:107:1-3:567.
20. Iskander, S. M., Amha, Y. M., Wang, P., Dong, Q., Liu, J., Corbett, M., & Smith, A. L. (2021). Investigation of Fats, Oils, and Grease Co-digestion With Food Waste in Anaerobic Membrane Bioreactors and the Associated Microbial Community Using MinION Sequencing. Frontiers in bioengineering and biotechnology, 9, 613626.‏ https://doi.org/10.3389/fbioe.2021.613626.
21. Jiang, J., Li, L., Cui, M., Zhang, F., Liu, Y., Liu, Y., ... & Guo, Y. (2018). Anaerobic digestion of kitchen waste: the effects of source, concentration, and temperature. Biochemical Engineering Journal, 135, 91-97.‏ https://doi.org/10.1016/j.bej.2018.04.004.
22. Kabouris, J. C., Tezel, U., Pavlostathis, S. G., Engelmann, M., Todd, A. C., & Gillette, R. A. (2008). The anaerobic biodegradability of municipal sludge and fat, oil, and grease at mesophilic conditions. Water Environment Research, 80(3), 212-221.‏ 10.2175/.‏ https://doi.org/106143007X220699.
23. Kim, S. H., Han, S. K., & Shin, H. S. (2004). Kinetics of LCFA inhibition on acetoclastic methanogenesis, propionate degradation and β-oxidation. Journal of Environmental Science and Health, Part A, 39(4), 1025-1037.‏ https://doi.org/10.1081/ese-120028411.
24. Koster, I. W., & Cramer, A. (1987). Inhibition of methanogenesis from acetate in granular sludge by long-chain fatty acids. Applied and environmental microbiology, 53(2), 403-409.‏ https://doi.org/10.1128/aem.53.2.403-409.1987.
25. Kurade, M. B., Saha, S., Salama, E. S., Patil, S. M., Govindwar, S. P., & Jeon, B. H. (2019). Acetoclastic methanogenesis led by Methanosarcina in anaerobic co-digestion of fats, oil and grease for enhanced production of methane. Bioresource technology, 272, 351-359.‏ https://doi.org/10.1016/j.biortech.2018.10.047.
26. Labatut, R. A., & Pronto, J. L. (2018). Sustainable waste-to-energy technologies: Anaerobic digestion. In Sustainable food waste-to-energy systems (pp. 47-67). Academic Press.‏ https://doi.org/10.1016/B978-0-12-811157-4.00004-8.
27. Li, C., Champagne, P., & Anderson, B. C. (2011). Evaluating and modeling biogas production from municipal fat, oil, and grease and synthetic kitchen waste in anaerobic co-digestions. Bioresource technology, 102(20), 9471-9480.‏ https://doi.org/10.1016/j.biortech.2011.07.103.
28. Lin, C. S. K., Pfaltzgraff, L. A., Herrero-Davila, L., Mubofu, E. B., Abderrahim, S., Clark, J. H., & Luque, R. (2013). Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy & Environmental Science, 6(2), 426-464.‏ https://doi.org /10.1039/c2ee23440h.
29. Long, J. H., Aziz, T. N., Francis III, L., & Ducoste, J. J. (2012). Anaerobic co-digestion of fat, oil, and grease (FOG): A review of gas production and process limitations. Process Safety and Environmental Protection, 90(3), 231-245.‏ https://doi.org/10.1016/j.psep.2011.10.001.
30. Luostarinen, S., Luste, S., & Sillanpää, M. (2009). Increased biogas production at wastewater treatment plants through co-digestion of sewage sludge with grease trap sludge from a meat processing plant. Bioresource technology, 100(1), 79-85.‏ https://doi.org/10.1016/j.biortech.2008.06.029.
31. Martínez, E. J., Gil, M. V., Fernandez, C., Rosas, J. G., & Gómez, X. (2016). Anaerobic codigestion of sludge: addition of butcher’s fat waste as a cosubstrate for increasing biogas production. PLoS One, 11(4), e0153139.‏ https://doi.org/10.1371/journal.pone.0153139.
32. Meng, Y., Li, S., Yuan, H., Zou, D., Liu, Y., Zhu, B., & Li, X. (2015). Effect of lipase addition on hydrolysis and biomethane production of Chinese food waste. Bioresource technology, 179, 452-459.‏ https://doi.org/10.1016/j.biortech.2014.12.015.
33. Musa, M. A., Idrus, S., Hasfalina, C. M., & Daud, N. N. N. (2018). Effect of organic loading rate on anaerobic digestion performance of mesophilic (UASB) reactor using cattle slaughterhouse wastewater as substrate. International journal of environmental research and public health, 15(10), 2220.‏ https://doi.org/10.3390/ijerph15102220.
34. Mustapha, N. A., Sharuddin, S. S., Zainudin, M. H. M., Ramli, N., Shirai, Y., & Maeda, T. (2017). Inhibition of methane production by the palm oil industrial waste phospholine gum in a mimic enteric fermentation. Journal of Cleaner Production, 165, 621-629.‏ https://doi.org/10.1016/j.jclepro.2017.07.129.
35. Nakhla, G., Al-Sabawi, M., Bassi, A., & Liu, V. (2003). Anaerobic treatability of high oil and grease rendering wastewater. Journal of Hazardous Materials, 102(2-3), 243-255.‏ https://doi.org/10.1016/s0304-3894(03)00210-3.
36. Neves, L., Oliveira, R., & Alves, M. M. (2009). Fate of LCFA in the co-digestion of cow manure, food waste and discontinuous addition of oil. Water research, 43(20), 5142-5150.‏ https://doi.org/10.1016/10.1016/j.watres.2009.08.013.
37. Noutsopoulos, C., Andreadakis, A., Mamais, D., & Gavalakis, E. (2007). Identification of type and causes of filamentous bulking under Mediterranean conditions. Environmental technology, 28(1), 115-122.‏ https://doi.org/10.1080/09593332808618771.
38. Noutsopoulos, C., Mamais, D., Antoniou, K., Avramides, C., Oikonomopoulos, P., & Fountoulakis, I. (2013). Anaerobic co-digestion of grease sludge and sewage sludge: The effect of organic loading and grease sludge content. Bioresource technology, 131, 452-459.‏ https://doi.org/10.1016/j.biortech.2012.12.193.
39. Palatsi, J., Laureni, M., Andrés, M. V., Flotats, X., Nielsen, H. B., & Angelidaki, I. (2009). Strategies for recovering inhibition caused by long chain fatty acids on anaerobic thermophilic biogas reactors. Bioresource technology, 100(20), 4588-4596.‏ https://doi.org/10.1016/j.biortech.2009.04.046.
40. Pereira, M. A., Sousa, D. Z., Mota, M., & Alves, M. M. (2004). Mineralization of LCFA associated with anaerobic sludge: kinetics, enhancement of methanogenic activity, and effect of VFA. Biotechnology and bioengineering, 88(4), 502-511.‏ https://doi.org/10.1002/bit.20278.
41. Quéméneur, M., & Marty, Y. (1994). Fatty acids and sterols in domestic wastewaters. Water Research, 28(5), 1217-1226.‏ https://doi.org/10.1016/0043-1354(94)90210-0.
42. Samarasiri, B. K. T., Mihiranga, P. A. D., & Rathnasiri, P. G. (2016). Effect of lipid inhibition in anaerobic wastewater treatment: a case study using desiccated coconut wastewater. Annual Session of the Institution of Engineers, Sri Lanka, 1-10.‏ https://doi.org/10.13140/RG.2.2.36760.80646.

43. Sethi, R. (2018). Biogas Production from Organic Waste, Meat and Fog by Anaerobic Digestion and Ultimate Sludge Digestibility (Doctoral dissertation, Florida Atlantic University).‏
44. Shea, T., Johnson, T. D., Gabel, D., & Forbes, B. (2010). Introducing FOG to sludge–a sticky proposition. Proceedings of the Water Environment Federation, 2010(14), 2688-2700.‏ https://doi.org/10.2175/193864710798170513.
45. Silvestre, G., Rodríguez-Abalde, A., Fernández, B., Flotats, X., & Bonmatí, A. (2011). Biomass adaptation over anaerobic co-digestion of sewage sludge and trapped grease waste. Bioresource technology, 102(13), 6830-6836.‏ https://doi.org/10.1016/j.biortech.2011.04.019.
46. Sousa, D. Z., Smidt, H., Alves, M. M., & Stams, A. J. (2009). Ecophysiology of syntrophic communities that degrade saturated and unsaturated long-chain fatty acids. FEMS microbiology ecology, 68(3), 257-272.‏ https://doi.org/10.1111/j.1574-6941.2009.00680.x.
47. Sun, H., Wu, S., & Dong, R. (2016). Monitoring volatile fatty acids and carbonate alkalinity in anaerobic digestion: titration methodologies. Chemical Engineering & Technology, 39(4), 599-610.‏ https://doi.org /10.1002/ceat.201500293.
48. Sun, Y., Wang, D., Yan, J., Qiao, W., Wang, W., & Zhu, T. (2014). Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes. Waste Management, 34(6), 1025-1034.‏ https://doi.org/10.1016/j.wasman.2013.07.018.
49. Suto, P., Gray, D., Larsen, E., & Hake, J. (2006). Innovative anaerobic digestion investigation of fats, oils, and grease. Proceedings of the Water Environment Federation, 2006(2), 858-879.‏ https://doi.org/10.2175/193864706783796853.
50. Usman, M., Salama, E. S., Arif, M., Jeon, B. H., & Li, X. (2020). Determination of the inhibitory concentration level of fat, oil, and grease (FOG) towards bacterial and archaeal communities in anaerobic digestion. Renewable and Sustainable Energy Reviews, 131, 110032.‏ https://doi.org/10.1016/j.rser.2020.110032.
51. Wan, C., Zhou, Q., Fu, G., & Li, Y. (2011). Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease. Waste management, 31(8), 1752-1758.‏ https://doi.org /10.1016/j.wasman.2011.03.025.
52. Wang, L., Aziz, T. N., & Francis, L. (2013). Determining the limits of anaerobic co-digestion of thickened waste activated sludge with grease interceptor waste. Water research, 47(11), 3835-3844.‏ https://doi.org/10.1016/j.watres.2013.04.003.
53. Williams, J. B., Clarkson, C., Mant, C., Drinkwater, A., & May, E. (2012). Fat, oil and grease deposits in sewers: Characterization of deposits and formation mechanisms. Water research, 46(19), 6319-6328.‏ https://doi.org/10.1016/j.watres.2012.09.002.
54. Xue, S., Zhao, N., Song, J., & Wang, X. (2019). Interactive effects of chemical composition of food waste during anaerobic co-digestion under thermophilic temperature. Sustainability, 11(10), 2933.‏ https:// doi:10.3390/su11102933.
55. Zhang, J., Tian, H., Wang, X., & Tong, Y. W. (2020). Effects of activated carbon on mesophilic and thermophilic anaerobic digestion of food waste: Process performance and life cycle assessment. Chemical Engineering Journal, 399, 125757.‏ https://doi.org/10.1016/j.cej.2020.125757.
How to Cite
Alhraishawi, A., & Aslan, S. (2023). Effect of Lipid Content on Anaerobic Digestion Process and Microbial Community: Review Study. European Scientific Journal, ESJ, 19(39), 122. https://doi.org/10.19044/esj.2023.v19n39p122