Effect of Salt Content on Biogas Production and Microbial Activity: Review Study

  • Ali Alhraishawi Department of Civil Engineering, College of Engineering, Misan University, Iraq
  • Sukru Aslan Sivas Cumhuriyet University, Department of Environmental Engineering, Sivas, Turkey
Keywords: Anaerobic digestion, salt content, methane production, microbial community, kinetic model


Over the years, biogas production technology has advanced with the goal of reducing process costs and greenhouse gas emissions, and increasing biogas production. Several design factors and operational aspects must be taken into account in order to produce a stable and efficient biogas. When the substrates contain high salts, anaerobic treatment will be ineffective due to the disadvantages of high energy input and operating cost, membrane contamination, and low efficiency. This indicates that the treatment of high salinity organic waste is a big challenge. High salinity levels had a negative effect on bacterial growth through bacterial osmotic pressure metabolism. For example, high salinity can alter the course of fermentation and the accumulation of volatile fatty acids at high concentrations, as well as cause a decrease in methane yield and maximum rate of methane production, prolonging the late-stage period. A low level of salt concentration encourages the growth of bacteria since sodium is essential for the growth and metabolism of microorganisms in AD systems. When the sodium salt concentration is less than 8 g/L, there is no significant inhibition in the generation of methane. Addition of >8 g/L NaCl, however, significantly reduced methane production (causing 17-80 percent inhibition). This paper focuses on understanding in detail how NaCl affects methane production and microbial activity, report salt concentrations that improve process efficiency and reduce inhibition, as well as review the modified kinetic model and demonstrate the effect of salt on methane production and delay in methanogenesis.


Download data is not yet available.


1. Ahn, H. K., Smith, M. C., Kondrad, S. L., & White, J. W. (2010). Evaluation of biogas production potential by dry anaerobic digestion of switchgrass–animal manure mixtures. Applied biochemistry and biotechnology, 160(4), 965-975.‏ https://doi.org/10.1007/s12010-009-8624-x.
2. Alhraishawi, A. A., & Alani, W. K. (2018, May). The co-fermentation of organic substrates: A review performance of biogas production under different salt content. In Journal of Physics: Conference Series (Vol. 1032, No. 1, p. 012041). IOP Publishing.‏ http://dx.doi.org/10.1088/1742-6596/1032/1/012041.
3. Anderson, K. L., Apolinario, E. E., & Sowers, K. R. (2012). Desiccation as a long-term survival mechanism for the archaeon Methanosarcina barkeri. Applied and environmental microbiology, 78(5), 1473-1479.‏ https://doi.org/10.1128/AEM.06964-11.
4. Annibaldi, V., Cucchiella, F., Gastaldi, M., Rotilio, M., & Stornelli, V. (2019). Sustainability of Biogas Based Projects: Technical and Economic Analysis. In E3S Web of Conferences (Vol. 93, p. 03001). EDP Sciences. ‏ https://doi.org/10.1051/e3sconf/20199303001.
5. Anwar, N., Wang, W., Zhang, J., Li, Y., Chen, C., Liu, G., & Zhang, R. (2016). Effect of sodium salt on anaerobic digestion of kitchen waste. Water Science and Technology, 73(8), 1865-1871.‏ ‏ https://doi.org/10.2166/wst.2016.035.
6. Appels, L., Baevens, J., Degrève, J., & Dewil, R. (2008). Principios y potencial de la digestión anaerobia de lodos activados por residuos. Prog. Combustible de energía. Sci, 34, 755-781.‏ https://doi.org/10.1016/j.pecs.2008.06.002.
7. Appels, L., Lauwers, J., Degrève, J., Helsen, L., Lievens, B., Willems, K., ... & Dewil, R. (2011). Anaerobic digestion in global bio-energy production: potential and research challenges. Renewable and Sustainable Energy Reviews, 15(9), 4295-4301.‏ https://doi.org/10.1016/j.rser.2011.07.121.
8. Behera, S. K., Park, J. M., Kim, K. H., & Park, H. S. (2010). Methane production from food waste leachate in laboratory-scale simulated landfill. Waste management, 30(8-9), 1502-1508.‏ https://doi.org/10.1016/j.wasman.2010.02.028.
9. Brioukhanov, A. L., Netrusov, A. I., & Eggen, R. I. (2006). The catalase and superoxide dismutase genes are transcriptionally up-regulated upon oxidative stress in the strictly anaerobic archaeon Methanosarcina barkeri. Microbiology, 152(6), 1671-1677.‏ https://doi.org/10.1099/mic.0.28542-0.
10. Chandra, R., Vijay, V. K., Subbarao, P. M. V., & Khura, T. K. (2012). Production of methane from anaerobic digestion of jatropha and pongamia oil cakes. Applied Energy, 93, 148-159.‏ https://doi.org/10.1016/j.apenergy.2010.10.049
11. Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: a review. Bioresource technology, 99(10), 4044-4064.‏ https://doi.org/10.1016/j.biortech.2007.01.057.
12. Cheng, H., & Hu, Y. (2010). Municipal solid waste (MSW) as a renewable source of energy: Current and future practices in China. Bioresource technology, 101(11), 3816-3824.‏ https://doi.org/ 10.1016/j.biortech.2010.01.040.
13. Corsino, S. F., Torregrossa, M., & Viviani, G. (2021). Biomethane Production from Anaerobic Co-Digestion of Selected Organic Fraction of Municipal Solid Waste (OFMSW) with Sewage Sludge: Effect of the Inoculum to Substrate Ratio (ISR) and Mixture Composition on Process Performances. International Journal of Environmental Research and Public Health, 18(24), 13048.‏ https://doi.org/10.3390/ijerph182413048
14. Dai, X., Duan, N., Dong, B., & Dai, L. (2013). High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: Stability and performance. Waste Management, 33(2), 308-316.‏ https://doi.org/10.1016/j.wasman.2012.10.018.
15. De Baere, L. (2006). Will anaerobic digestion of solid waste survive in the future? Water science and technology, 53(8), 187-194.‏ https://doi.org/10.2166/wst.2006.249.
16. De Gioannis, G., Muntoni, A., Polettini, A., & Pomi, R. (2013). A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Management, 33(6), 1345-1361.‏ https://doi.org/10.1016/j.wasman.2013.02.019.
17. Elefsiniotis, P., & Wareham, D. G. (2007). Utilization patterns of volatile fatty acids in the denitrification reaction. Enzyme and Microbial Technology, 41(1-2), 92-97.‏ https://doi.org/10.1016/j.enzmictec.2006.12.006.
18. European Commission (2005). Reference document on best available techniques for the waste treatments industries. Integrated pollution prevention and control.
19. Feijoo, G., Soto, M., Mendez, R., & Lema, J. M. (1995). Sodium inhibition in the anaerobic digestion process: antagonism and adaptation phenomena. Enzyme and Microbial Technology, 17(2), 180-188.‏ https://doi.org/10.1016/0141-0229(94)00011-F.
20. Fetzer, S., Bak, F., & Conrad, R. (1993). Sensitivity of methanogenic bacteria to oxygen and desiccation from paddy soil. FEMS Microbiol, 12, 107-115.‏
21. Ghosh, S., & Pohland, F. G. (1974). Kinetics of substrate assimilation and product formation in anaerobic digestion. Journal (Water Pollution Control Federation), 748-759.‏ https://www.jstor.org/stable/25038188.
22. Gourdon, R., Comel, C., Vermande, P., & Veron, J. (1989). Fractionation of the organic matter of a landfill leachate before and after aerobic or anaerobic biological treatment. Water Research, 23(2), 167-173.‏ https://doi.org/10.1016/0043-1354(89)90040-7.
23. Han, M. J., Behera, S. K., & Park, H. S. (2012). Anaerobic co‐digestion of food waste leachate and piggery wastewater for methane production: statistical optimization of key process parameters. Journal of Chemical Technology & Biotechnology, 87(11), 1541-1550.‏ https://doi.org/10.1002/jctb.3786
24. Jie, W., Peng, Y., Ren, N., & Li, B. (2014). Volatile fatty acids (VFAs) accumulation and microbial community structure of excess sludge (ES) at different pHs. Bioresource technology, 152, 124-129.‏ https://doi.org/10.1016/j.biortech.2013.11.011.
25. Jijai, S., & Siripatana, C. (2017). Kinetic model of biogas production from co-digestion of Thai rice noodle wastewater (Khanomjeen) with chicken manure. Energy Procedia, 138, 386-392.‏ https://doi.org/1088/1755-1315/463/1/012008.
26. Karagiannidis, A., & Perkoulidis, G. (2009). A multi-criteria ranking of different technologies for the anaerobic digestion for energy recovery of the organic fraction of municipal solid wastes. Bioresource technology, 100(8), 2355-2360.‏ https://doi.org/10.1016/j.biortech.2008.11.033.
27. Khalid, A., Arshad, M., Anjum, M., Mahmood, T., & Dawson, L. (2011). The anaerobic digestion of solid organic waste. Waste management, 31(8), 1737-1744.‏ https://doi.org/10.1016/j.wasman.2011.03.021.
28. Kiener, A., & Leisinger, T. (1983). Oxygen sensitivity of methanogenic bacteria. Systematic and Applied Microbiology, 4(3), 305-312.‏ https://doi.org/10.1016/S0723-2020(83)80017-4.
29. Kwietniewska, E., & Tys, J. (2014). Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renewable and Sustainable Energy Reviews, 34, 491-500.‏ https://doi.org/10.1016/j.rser.2014.03.041.
30. Lee, D. H., Behera, S. K., Kim, J. W., & Park, H. S. (2009). Methane production potential of leachate generated from Korean food waste recycling facilities: a lab-scale study. Waste Management, 29(2), 876-882.‏ https://doi.org/10.1016/j.wasman.2008.06.033.
31. Lefebvre, O., Quentin, S., Torrijos, M., Godon, J. J., Delgenes, J. P., & Moletta, R. (2007). Impact of increasing NaCl concentrations on the performance and community composition of two anaerobic reactors. Applied microbiology and biotechnology, 75(1), 61-69.‏ https://doi.org/10.1007/s00253-006-0799-2.
32. Lei, Z., Chen, J., Zhang, Z., & Sugiura, N. (2010). Methane production from rice straw with acclimated anaerobic sludge: effect of phosphate supplementation. Bioresource technology, 101(12), 4343-4348.‏ https://doi.org/10.1016/j.biortech.2010.01.083.
33. Li, X., Huang, J., Liu, Y., Huang, T., Maurer, C., & Kranert, M. (2019). Effects of salt on anaerobic digestion of food waste with different component characteristics and fermentation concentrations. Energies, 12(18), 3571.‏ https://doi.org/10.3390/en12183571.
34. Li, X. F., Hu, T. N., Huang, J. J., Liu, Y. Y., Peng, D. P., Wu, Z., & Huang, T. (2021, March). Study of salt effect on semi-continuous anaerobic digestion of food waste with modified first-order model. In IOP Conference Series: Earth and Environmental Science (Vol. 701, No. 1, p. 012032). IOP Publishing.‏ https://doi.org/10.1088/1755-1315/701/1/012032.
35. Lin, C. S. K., Pfaltzgraff, L. A., Herrero-Davila, L., Mubofu, E. B., Abderrahim, S., Clark, J. H., ... & Luque, R. (2013). Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy & Environmental Science, 6(2), 426-464.‏ https://doi.org/10.1039/C2EE23440H.
36. Luo, W., Phan, H. V., Hai, F. I., Price, W. E., Guo, W., Ngo, H. H., Yamamato, K., & Nghiem, L. D. (2016). Effects of salinity build-up on the performance and bacterial community structure of a membrane bioreactor. Bioresource technology, 200, 305-310.‏ https://doi.org/10.1016/j.biortech.2015.10.043
37. Manyi-Loh, C. E., Mamphweli, S. N., Meyer, E. L., Okoh, A. I., Makaka, G., & Simon, M. (2013). Microbial anaerobic digestion (bio-digesters) as an approach to the decontamination of animal wastes in pollution control and the generation of renewable energy. International journal of environmental research and public health, 10(9), 4390-4417.‏ https://doi.org/10.3390/ijerph10094390.
38. McInerney, M. J., Sieber, J. R., & Gunsalus, R. P. (2009). Syntrophy in anaerobic global carbon cycles. Current opinion in biotechnology, 20(6), 623-632.‏ https://doi.org/10.1016/j.copbio.2009.10.001.
39. Miyamoto, K. (Ed.). (1997). Renewable biological systems for alternative sustainable energy production (No. 128). Food & Agriculture Org. FAO Agricultural Services Bulletin (FAO)
40. Nagai, H., Kobayashi, M., Tsuji, Y., Nakashimada, Y., Kakizono, T., & Nishio, N. (2002). Biological and chemical treatment of solid waste from soy sauce manufacture. Water Science and Technology, 45(12), 335-338.‏ https://doi.org/10.2166/wst.2002.0443.
41. Ogata, Y., Ishigaki, T., Nakagawa, M., & Yamada, M. (2016). Effect of increasing salinity on biogas production in waste landfills with leachate recirculation: a lab-scale model study. Biotechnology Reports, 10, 111-116.‏ http://dx.doi.org/10.1016/j.btre.2016.04.004.
42. Oh, S. T., & Martin, A. D. (2013). A thermodynamic equilibrium consideration of the effect of sodium ion in acetoclastic methanogenesis. Journal of Chemical Technology & Biotechnology, 88(5), 834-844.‏ https://doi.org/10.1002/jctb.3909.
43. Omil, F., Mendez, R., & Lema, J. M. (1996). Anaerobic treatment of seafood processing waste waters in an industrial anaerobic pilot plant. Water Sa, 22(2), 173-181.‏
44. Onodera, T., Syutsubo, K., Hatamoto, M., Nakahara, N., & Yamaguchi, T. (2017). Evaluation of cation inhibition and adaptation based on microbial activity and community structure in anaerobic wastewater treatment under elevated saline concentration. Chemical Engineering Journal, 325, 442-448.‏ https://doi.org/10.1016/j.cej.2017.05.081.
45. Pang, H., Xin, X., He, J., Cui, B., Guo, D., Liu, S., ... & Nan, J. (2020). Effect of NaCl concentration on microbiological properties in NaCl assistant anaerobic fermentation: hydrolase activity and microbial community distribution. Frontiers in Microbiology, 2449.‏ https://doi.org/10.3389/fmicb.2020.589222.
46. Pasupuleti, S. B., Sarkar, O., & Mohan, S. V. (2014). Upscaling of biohydrogen production process in semi-pilot scale biofilm reactor: evaluation with food waste at variable organic loads. International journal of hydrogen energy, 39(14), 7587-7596.‏ http://dx.doi.org/10.1016/j.ijhydene.2014.02.034.
47. Patel, G. B., & Roth, L. A. (1977). Effect of sodium chloride on growth and methane production of methanogens. Canadian journal of microbiology, 23(7), 893-897.‏ https://doi.org/10.1139/m77-131.
48. Pohland, F.G., & Ghosh, S. (1971). Developments in anaerobic stabilization of organic wastes – the two-phase concept. Environ. Lett. 1, 255–266. https://doi.org/10.1080/00139307109434990.
49. Pramanik, S. K., Suja, F. B., Porhemmat, M., & Pramanik, B. K. (2019). Performance and kinetic model of a single-stage anaerobic digestion system operated at different successive operating stages for the treatment of food waste. Processes, 7(9), 600.‏ https://doi.org/10.3390/pr7090600.
50. Qiu, Y., Li, C., Liu, C., & Hagos, K. (2021). Co-digestion biomethane production and the effect of nanoparticle: kinetics modeling and microcalorimetry studies. Applied Biochemistry and Biotechnology, 193(2), 479-491.‏ https://doi.org/10.1007/s12010-020-03436-1.
51. Rajeshwari, K. V., Pant, D. C., Lata, K., & Kishore, V. V. (1998, December). Studies on biomethanation of vegetable market waste. In Biogas forum.‏
52. Refai, S. (2017). Development of efficient tools for monitoring and improvement of biogas production. Dissertation zur Erlangung des Doktorgrades, Mathematisch-Naturwissenschaftlichen Fakultätder Rheinischen Friedrich-Wilhelms-Universität Bonn, 131p‏, https://nbn-resolving.org/urn:nbn:de:hbz:5n-46174.
53. Riaño, B., Molinuevo, B., & García-González, M. C. (2011). Potential for methane production from anaerobic co-digestion of swine manure with winery wastewater. Bioresource technology, 102(5), 4131-4136.‏ https://doi.org/10.1016/j.biortech.2010.12.077.
54. Rinzema, A., van Lier, J., & Lettinga, G. (1988). Sodium inhibition of acetoclastic methanogens in granular sludge from a UASB reactor. Enzyme and Microbial Technology, 10(1), 24-32.‏ https://doi.org/10.1016/0141-0229(88)90094-4.
55. Shi, Y., Fang, H., Li, Y. Y., Wu, H., Liu, R., & Niu, Q. (2021). Single and simultaneous effects of naphthalene and salinity on anaerobic digestion: Response surface methodology, microbial community analysis and potential functions prediction. Environmental Pollution, 291, 118188.‏ https://doi.org/10.1016/j.envpol.2021.118188.
56. Shetty, K. V., Nandennavar, S., & Srinikethan, G. (2008). Artificial neural networks model for the prediction of steady state phenol biodegradation in a pulsed plate bioreactor. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 83(9), 1181-1189.‏ https://doi.org/10.1002/jctb.1892.
57. Sierra, J. D. M., Oosterkamp, M. J., Wang, W., Spanjers, H., & van Lier, J. B. (2018). Impact of long-term salinity exposure in anaerobic membrane bioreactors treating phenolic wastewater: performance robustness and endured microbial community. Water research, 141, 172-184.‏ https://doi.org/10.1016/j.watres.2018.05.006.
58. Strömberg, S., Nistor, M., & Liu, J. (2015). Early prediction of Biochemical Methane Potential through statistical and kinetic modelling of initial gas production. Bioresource Technology, 176, 233-241.‏ https://doi.org/10.1016/j.biortech.2014.11.033.
59. Sudmalis, D., Gagliano, M. C., Pei, R., Grolle, K., Plugge, C. M., Rijnaarts, H. H. M., & Temmink, H. (2018). Fast anaerobic sludge granulation at elevated salinity. Water research, 128, 293-303.‏ https://doi.org/10.1016/j.watres.2017.10.038.
60. Vanstarkenburg, W. (1997). Anaerobic treatment of wastewater: state of the art. Microbiology, 66(5), 588-596.‏
61. Wang, S., Hou, X., & Su, H. (2017). Exploration of the relationship between biogas production and microbial community under high salinity conditions. Scientific reports, 7(1), 1-10.‏ https://doi.org/10.1038/s41598-017-01298-y.
62. Wang, S., Peng, L., Jiang, Y., Gikas, P., Zhu, B., & Su, H. (2016). Evaluation of a novel split-feeding anaerobic/oxic baffled reactor (A/OBR) for foodwaste anaerobic digestate: performance, modeling and bacterial community. Scientific reports, 6(1), 1-14.‏ https://doi.org/10.1038/srep34640.
63. Ward, A. J., Hobbs, P. J., Holliman, P. J., & Jones, D. L. (2008). Optimisation of the anaerobic digestion of agricultural resources. Bioresource technology, 99(17), 7928-7940.‏ https://doi.org/10.1016/j.biortech.2008.02.044.
64. Wu, Y., Wang, X., Tay, M. Q. X., Oh, S., Yang, L., Tang, C., & Cao, B. (2017). Metagenomic insights into the influence of salinity and cytostatic drugs on the composition and functional genes of microbial community in forward osmosis anaerobic membrane bioreactors. Chemical Engineering Journal, 326, 462-469.‏ https://doi.org/10.1016/j.cej.2017.05.172.
65. Ye, J., Li, D., Sun, Y., Wang, G., Yuan, Z., Zhen, F., & Wang, Y. (2013). Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. Waste management, 33(12), 2653-2658.‏ https://doi.org/10.1016/j.wasman.2013.05.014.
66. Yin, Y., Zhang, Z., Yang, K., Gu, P., Liu, S., Jia, Y., & Miao, H. F. (2022). Deeper Insight into the Effect of Salinity on the Relationship of Enzymatic Activity, Microbial Community and Key Metabolic Pathway During the Anaerobic Digestion of High Strength Organic Wastewater. Microbial Community and Key Metabolic Pathway During the Anaerobic Digestion of High Strength Organic Wastewater.‏ https://doi.org/10.2139/ssrn.4194762.
67. Zhang, H., Jiang, J., Li, M., Yan, F., Gong, C., & Wang, Q. (2016). Biological nitrate removal using a food waste-derived carbon source in synthetic wastewater and real sewage. Journal of environmental management, 166, 407-413.‏ DOI: http://dx.doi.org/10.1016/j.jenvman.2015.10.037.
68. Zhang, Y., Alam, M. A., Kong, X., Wang, Z., Li, L., Sun, Y., & Yuan, Z. (2017). Effect of salinity on the microbial community and performance on anaerobic digestion of marine macroalgae. Journal of Chemical Technology & Biotechnology, 92(9), 2392-2399.‏ https://doi.org/10.1002/jctb.5246.
69. Zhang, Y., Li, L., Kong, X., Zhen, F., Wang, Z., Sun, Y., ... & Lv, P. (2017). Inhibition effect of sodium concentrations on the anaerobic digestion performance of Sargassum species. Energy & Fuels, 31(7), 7101-7109.‏ https://doi.org/10.1021/acs.energyfuels.7b00557.
70. Zhao, J., Liu, Y., Wang, D., Chen, F., Li, X., Zeng, G., & Yang, Q. (2017). Potential impact of salinity on methane production from food waste anaerobic digestion. Waste Management, 67, 308-314.‏ https://doi.org/10.1016/j.wasman.2017.05.016.
How to Cite
Alhraishawi, A., & Aslan, S. (2023). Effect of Salt Content on Biogas Production and Microbial Activity: Review Study. European Scientific Journal, ESJ, 19(39), 17. https://doi.org/10.19044/esj.2023.v19n39p17