Effet de l’Еnrobage des Semences de Maïs (Zea mays L.) avec Trichoderma harzianum sur la Levée et la Croissance des Plantules au Burkina Faso

  • Dabiré Tobdem Gaston Université Nazi BONI, Laboratoire des Systèmes Naturels, Agrosystèmes et de l’Ingénierie de l’Environnement, Bobo-Dioulasso, Burkina Faso
  • Sanou Amadou Université Nazi BONI, Laboratoire des Systèmes Naturels, Agrosystèmes et de l’Ingénierie de l’Environnement, Bobo-Dioulasso, Burkina Faso
  • Bonzi Schémaéza Université Nazi BONI, Laboratoire des Systèmes Naturels, Agrosystèmes et de l’Ingénierie de l’Environnement, Bobo-Dioulasso, Burkina Faso
  • Somda Irénée Université Nazi BONI, Laboratoire des Systèmes Naturels, Agrosystèmes et de l’Ingénierie de l’Environnement, Bobo-Dioulasso, Burkina Faso
Keywords: Trichoderma, Burkina Faso, Maïs, Semences, Aspergillus

Abstract

Au Burkina Faso, de nombreuses espèces de moisissures infectent les grains de maïs entrainant des fontes de semis, des retards de croissance des plantes et la production de mycotoxines dangereuses pour la santé humaine et animale. L’objectif de la présente étude a été d’évaluer le comportement des semences de maïs enrobées avec les conidies d’une souche locale de Trichoderma harzianum ayant présenté des propriétés antifongiques et amélioré la croissance végétative des plantules d’oignon selon des études antérieurs. Six lots de semences de six variétés de maïs ont ainsi été collectés et analysés pour identifier les espèces de moisissures en présence. Les principales espèces identifiées ont ensuite été confrontées in vitro avec T. harzianum pour apprécier l’antagonisme. Des grains de maïs ont enfin été enrobés avec les conidies de T. harzianum en utilisant de l’argile comme liant puis semés et entrenus pendant vingt-cinq (25) jours pour apprécier la levée et la croissance des plantules. Fusarium verticillioides, Aspergillus niger et Aspergillus flavus ont été les trois principaux champignons présents dans les semences analysées à des taux d’infection variant de 8,3 à 89,5%, en fonction des variétés de maïs. L’évaluation de l’antagonisme de T. harzianum a montré une réduction significative de la croissance de ces trois champignons avec des coefficients d’antagonisme compris entre 0,68 et 0,86. Concernant l’effet promoteur de la croissance végétale, l’enrobage des semences avec T. harzianum a permis d’améliorer significativement la levée, la longueur des plantes et des racines ainsi que la biomasse fraiche par rapport aux semences non enrobées.

 

In Burkina Faso, many mold species infect maize grains causing seedling damping off, plant growth retardation, and the production of mycotoxins which are dangerous for human and animal health. The objective of the present study was to evaluate the behavior of maize seeds coated with the conidia of a local strain of Trichoderma harzianum having shown antifungal properties and improved the vegetative growth of onion seedlings according to previous studies. Six seed lots from six varieties of maize were thus collected and analyzed to identify the existing mold species. The main identified species were then confronted in vitro with T. harzianum to assess the antagonistic effects. Maize seeds were finally coated with the conidia of T. harzianum using clay as binder and then sown and maintained for twenty-five (25) days to assess the emergence and growth of the seedlings. Fusarium verticillioides, Aspergillus niger, and Aspergillus flavus were the three main fungi present in analyzed seeds lots with infection rates varying from 8.3 to 89.5%, depending on the maize varieties. The evaluation of the antagonism of T. harzianum showed a significant reduction in the growth of the three fungal species with antagonism coefficients situated between 0.68 and 0.86. In terms of plant growth-promoting effect, seed coating with T. harzianum significantly improved seedling emergence, plant and root length and fresh biomass, compared to non-coated seeds.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

PlumX Statistics

References

1. Accinelli, C., Abbas, H.K., Little, N.S., Kotowicz, J.K., Mencarelli, M., & Shier, W.T. (2016). A liquid bioplastic formulation for film coating of agronomics seeds. Crop protection, 89, 123-128. https://doi.org/10.1016/j.cropro.2016.07.010
2. Bambara, A. (2021). Characterization of Bacillus sp. strains with antifungal activities against Aspergillus section Flavi contaminating maize. [Mémoire de Master non publié], Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso.
3. Bekkar, A.A. (2016). Pouvoir antagoniste et mode d’action de Trichoderma vis-à-vis de quelques champignons phytopathogènes [Thèse de Doctorat, Université Mustapha Stambouli Mascara, Algérie], http://www.secheresse.info/spip.php?article79994
4. Bonzi, S., Somda, I., Zida, E., Sereme, P., & Adam, T. (2012). Effect of plant aqueous extract of Cymbopogon citratus (D.C.) Stapf.on seed germination and it efficacy in controlling Phoma sorghina (Sacc.) Boerema Dorenbosch and Van Kesteren transmission from naturally infected seed to sorghum plant organs and grains in field. Archives of Phytopathology and Plant Protection, 45 (20), 2429-2436. http://dx.doi.org/10.1080/03235408.2012.728056
5. Bonzi, S., Somda, I., Sereme, P., & Adam T. (2013). Efficacy of essential oil of Cymbopogon citratus (D.C.) Stapf. Lippia multiflora Moldenke and hot water in the control of seed-bornes fungi Phoma sorghina and effects on Sorghum bicolor (L.) Moench seed germination and plants development in Burkina Faso. Net Journal of Agricultural Science, 1(4), 111-115. http://www.netjournals.org/agricsci_vol1_4.html
6. Caron, J., Laverdière, L., Thibodeau, P.O., & Bélanger, R.R. (2002). Utilisation d’une souche indigène de Trichoderma harzianum contre cinq agents pathogènes chez le concombre et la tomate de serre au Québec. Phytoprotection, 83, 73-87. https://doi.org/10.7202/706230ar
7. Carvalho, D.D.C., Junior, M.L., Martins, I., Inglis, P.W., & Mello, S.C.M. (2014). Biological control of Fusarium oxysporum f. sp. phaseoli by Trichoderma harzianum and its use for common bean seed treatment. Tropical Plant Pathology, 39(5), 384-391. https://doi.org/10.1590/S1982-56762014000500005
8. Chaves Hernández, A.J. (2014). Poultry and Avian Diseases, Editor(s): Neal K. Van Alfen, Encyclopedia of Agriculture and Food Systems, Academic Press, Pages 504-520. https://doi.org/10.1016/B978-0-444-52512-3.00183-2
9. Compaoré, H., Samandoulgou, S., Tapsoba F. W., Bambara A., Ratongue H., Sawadogo I., Kaboré, D., Ouattara-Sourabié, P. B., & Sawadogo-Lingani H. (2021a). Aflatoxigenic potential of Aspergillus section Flavi isolated from maize seeds, in Burkina Faso. African Journal of Microbiology Research, 15(8), 420-428. DOI: 10.5897/AJMR2021.9553
10. Compaoré, H., Samandoulgou, S., Ware, L. Y., Bambara A., Ratongue H., Sawadogo I., & Sawadogo-Lingani H. (2021b). Identification of Aspergillus section Flavi and Fumigati in maize grown in Burkina Faso. International Journal of Biosciences, 18(6), 25-36. http://dx.doi.org/10.12692/ijb/18.6.25-36
11. Contreras-Cornejo, H.A., Macias-Rodriguez, L., Corte´s-Penagos, C., & Lopez-Bucio, J. (2009). Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiology, 149, 1579-1592. https://doi.org/10.1104/pp.108.130369
12. Dabiré, T.G., Bonzi, S., Somda, I. and Legrève, A., (2016). Evaluation of the potential of Trichoderma harzianum as a plant growth promoter and biocontrol agent against Fusarium damping-off in onion in Burkina Faso. Asian Journal of plant pathology, 10, 49-60.URL: https://scialert.net/abstract/?doi=ajppaj.2016.49.60
13. Dabiré, T.G., Bonzi, S., Somda, I., & Legrève, A. (2016c). Evaluation in vitro de l’action antagoniste d’isolats de Trichoderma harzianum contre trois espèces fongiques pathogènes de l’oignon au Burkina Faso. Tropicultura, 34(3), 313-322. http://www.tropicultura.org/text/v34n3/313.pdf
14. Dabiré, T.G., Neya B.F., S., Somda, I., & Legrève, A. (2021). Pathogenicity study ofsome seed-borne fungi of onion (Allium cepa L.) from Burkina Faso. International Journal of Biological and Chemical Sciences, 15(3), 1062-1072. https://dx.doi.org/10.4314/ijbcs.v15i3.17
15. Dal Bello, G.M., Monaco, C.I. & Simon, M.R. (2002). Biological control of seedling blight of wheat caused by Fusarium graminearum with beneficial rhizosphere microorganisms. World Journal of Microbiology & Biotechnology, 18, 627–636. https://doi.org/10.1023/A:1016898020810
16. Dao K. (2013). Etude de la variabilité de Fusarium verticillioides (Sacc.). Nirenberg isolé des semences paysannes de maïs au Burkina Faso et recherche de méthodes de lutte alternatives basées sur les extraits de plantes in vitro. [Mémoire d’Ingénieur non publié], Institut du Développement Rural, Université Polytechnique de Bobo-Dioulasso, Bobo-Dioulasso, Burkina Faso.
17. Gary, J.S., & Hebbar, P.K. (2015). Trichoderma. Identification and agricultural applications. The American Phytopathological Society press. 3340 Pilot Knob Road. St Paul, Minnesota 55121 USA. Library of Congress Control number: 2015908956. International Standard book n°: 978-0-89054-484-6.
18. Gasoni, L., Kahn, N., Yossen, V., Cozzi, J., Kobayashi, K., Babbitt, S., Barrera, V., & Zumelzu, G. (2008). Effect of soil solarization and biocontrol agents on plant stand and yield on table beet in Cordoba (Argentina). Crop Protection, 27(3-5), 337-342. https://doi.org/10.1016/j.cropro.2007.06.004
19. Gautam, S.S., Kanchan, K., & Satsangi, G.P. (2015). Effect of Trichoderma species on germination and growth of Mungbean (Vigna radiata L.) and its antagonistic effect against fungal pathogens. International Journal of Advanced Research, 3 (2), 153-158. https://ustboniface.libguides.com/citer/apa7#Article%20de%20p%C3%A9riodique
20. Hibar K., Daami-remadi, M., & Mahjoub, M. (2007). Induction of Resistance in Tomato Plants against Fusarium oxysporum f.sp. radicis-lycopersici by Trichoderma spp. Tunisian Journal of Plant Protection, 2, 47-58. https://www.researchgate.net/publication/284079077_Induction_of_resistance_in_tomato_plants_against_Fusarium_oysporum_fsp_radicislycopersici_by_Trichoderma_spp
21. Hoyos-Carvaja, L., Orduz, S., & Bissett, J.D. (2009). Growth stimulation in bean (Phaseolus vulgaris L.) by Trichoderma. Biological Control, 51(3), 409-416. https://doi.org/10.1016/j.biocontrol.2009.07.018
22. Ishrat N., & Shahnaz D. (2009). Detection of seed borne mycoflora in maize (Zea mays L.). Pakistan Journal of botany, 41(1), 443-451.
https://www.cabdirect.org/cabdirect/abstract/20093118623
23. Malathi, S., & Mohan, S. (2011). Evaluation of biocontrol agents and organic amendments against onion basal rot caused by Fusarium oxysporum f.sp.cepae. Madras Agricultural Journal, 98, (10-12), 382-385. https://www.amazon.com/Biological-control-onion-basal-disease/dp/3659144266
24. Mathur, S.B., & Kongsdal, O. (2003). Common laboratory seed health testing methods for detecting fungi, 1st Ed. Kandrups Bogtrkkeri Publication, Denmark.
25. Meraj-ul-Haque and Nandkar P.B. (2012). Antagonistic effect of rhizospheric Trichoderma isolates against tomato damping-off pathogen, Fusarium oxysporum f.sp. lycopersici, International Journal of Research in BioSciences (IJRBS), 1(2), 27-31. http://www.ijrbs.in/index.php/ijrbs/article/view/51
26. Ministère de l’Agriculture et Aménagements Hydro-agricoles / Direction Générale des Etudes et des Statistiques Sectorielles (MAAH/DGESS). (2020). Annuaire des statistiques agricoles 2020. 437 p. (Pages 152, 305 & 322). https://www.agriculture.bf/upload/docs/application/pdf/2021-07/annuaire_agriculture_2020_def.pdf
27. Monaco, C. (2021). Biocontrol of fungal plant diseases by Trichoderma sp strains, as an alternative for sustainable production. Some trials with good results in Argentina. Academics Letters, Article 4342.https://doi.org/10.20935/AL4342
28. Moss, M. (2009). Toxigenic fungi, Editor(s): Clive de W. Blackburn, Peter J. McClure, In Woodhead Publishing Series in Food Science, Technology and Nutrition, Foodborne Pathogens (Second Edition), Woodhead Publishing, Pages 1042-1059, https://doi.org/10.1533/9781845696337.3.1042.
29. Nagerabi, S.A.F. & Abdalla, R.M. (2004). Survey of seed borne fungi of Sudanese variétés of onion, with new records, Phytoparasitica, 32(4), 413-416. https://doi.org/10.1007/BF02979854
30. Ortega-Garcia, J.G., Montes-Belmont, R., Rodriguez-Monroy, M., Ramirez-Trujillo, J.A., & Suarez-Rodriguez, R. (2015). Effect of Trichoderma asperellum applications and mineral fertilization on growth promotion and the content of phenolic compounds and flavonoids in onions. Scientia Horticulturae, 195, 8-16. https://doi.org/10.1016/j.scienta.2015.08.027
31. Pitt, J.I. (2014). Mycotoxins: Fumonisins, Editor(s): Yasmine Motarjemi, Encyclopedia of Food Safety, Academic Press, 2014, Pages 299-303, https://doi.org/10.1016/B978-0-12-378612-8.00192-X
32. Son, D., Zerbo, K.B.F., Bonzi, S., Legreve, A., Somda, I., & Schiffers B. (2018). Assessment of Tomato (Solanum lycopersicum L.) Producers Exposure Level to Pesticides, in Kouka and Toussiana (Burkina Faso). International Journal of Environnemental Research. And Public Health, 15(2), 204, https://doi.org/10.3390/ijerph15020204
33. Velivelli, S.L.S., De Vos, P., Kromann, P., Declerck, S., & Prestwich, B.D. (2014). Biological control agents: from field to market, problems, and challenges. Trends in Biotechnology, 32(10), 493-496. DOI: 10.1016/j.tibtech.2014.07.002
34. Yedidia, I., Shrivasta, A.K., Kapulnik, Y., & Chet, I. (2001). Effect of Trichoderma harzianum on microelement concentration and increased growth of cucumber plants. Plant and Soil, 235, 235–242. https://doi.org/10.1023/A:1011990013955
Published
2023-08-31
How to Cite
Gaston, D. T., Amadou, S., Schémaéza, B., & Irénée, S. (2023). Effet de l’Еnrobage des Semences de Maïs (Zea mays L.) avec Trichoderma harzianum sur la Levée et la Croissance des Plantules au Burkina Faso. European Scientific Journal, ESJ, 19(24), 90. https://doi.org/10.19044/esj.2023.v19n24p90
Section
ESJ Natural/Life/Medical Sciences