Clarification of Water Stress in Apple Seedlings Using HSI Texture with Machine Learning Technique

  • Yanying An School of Information Technology, Murdoch University, Australia School of Horticulture, Qingdao Agricultural University, China
  • Ran Wang School of Horticulture, Qingdao Agricultural University, China
Keywords: Hyperspectral imaging; machine learning; plant water stress; plant leaf; plant physiology

Abstract

Apples are known for their nutrition and economic value. Accurate and rapid diagnosis of water status in apple seedlings on an individual rootstock basis is a prerequisite for precision water management. This study presents a rapid and non-destructive approach for estimating water content in apple seedlings at leaf levels. A PIKA L system collects hyperspectral images(400-1000nm) of apple leaves. To the author's knowledge, no prior work was conducted using the spectral-texture approach in plant water stress. Our research extracts spatial information, gray-level co-occurrence matrix (GLCM), from feature wavelength images of hypercubes. Machine learning methods are applied to these spatial feature matrixs to identify apple leaves under different water stresses. In addition, differences in spectral responses were analysed using machine learning techniques for sorting apple seedlings with varying water treatments (dry, normal, and overwatering). Also, we measure chlorophyll to determine the relationship between hyperspectral characteristics and physiological changes. The achievements of the research indicate that the fusion of texture and hyperspectral imaging coupled with machine learning techniques is promising and presents a powerful potential to determine the water stress in the leaves of apple seedlings.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

1. Abdulridha, J., Ehsani, R., & De Castro, A. (2016). Detection and differentiation between laurel wilt disease, phytophthora disease, and salinity damage using a hyperspectral sensing technique. Agriculture, 6(4), 56.
2. Afifi, A, & Ashour, W. (2012). Image retrieval based on content using colour feature. International scholarly research notices.https://doi.org/10.5402/2012/248285.
3. Agjee, N. E., Mutanga, O., & Ismail, R. (2015). Remote sensing bio-control damage on aquatic invasive alien plant species. South African Journal of Geomatics, 4(4), 464-485.
4. Alexandridis, A., Chondrodima, E., & Sarimveis, H. (2016). Cooperative learning for radial basis function networks using particle swarm optimization. Applied Soft Computing, 49, 485-497.
5. AlSuwaidi A, Grieve B, and Yin H. (2017). Spectral-texture approach to hyperspectral image analysis for plant classification with SVMs. 2017 IEEE International Conference on Imaging Systems and Techniques (IST), 1-6, doi: 10.1109/IST.2017.8261496.
6. Apple & Pear Australia Limited. (2023). Guidelines for irrigation management for apple and pear growers. https://apal.org.au/wp-content/uploads/2019/09/fo-ow-handout-09-sept-irrigation-guidelines.pdf
7. Ayala Martini D. (2018). Bachelor’s Thesis. Universidad Pública de Navarra; Navarra, Spain: Automatización del Análisis de Imágenes Hiperespectrales para Identificación de Aptitud de Patatas.
8. Backhaus, A., Bollenbeck, F., & Seiffert, U. (2011, June). Robust classification of the nutrition state in crop plants by hyperspectral imaging and artificial neural networks. In 2011 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS) (pp. 1-4). IEEE.
9. Bajji, M, Lutts, S, and Kinet, J. (2000). Physiologi cal changes after exposure to and recovery from PEG (Polyethylene Gilcol) -induced water deficit in callus cultures issued from durum wheat (Triticum durum Desf.)cultivars differing in drought resistance. J.Plant Physiol, 156, 75-83.
10. Bauriegel, E. & Herppich, W. (2014). Hyperspectral and chlorophyll fluorescence imaging for early detection of plant diseases, with special reference to Fusarium spec. Infections on wheat. Agriculture, 4(1), 32-57.
11. Behmann, J., Steinrücken, J., & Plümer, L. (2014). Detection of early plant stress responses in hyperspectral images. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 98-111.
12. Bhagat, P., Choudhary, P., Manglem Singh, K. (2019). A comparative study for brain tumour detection in MRI images using texture features.Chapter 13 - A comparative study for brain tumour detection in MRI images using texture features. In Advances in ubiquitous sensing applications for healthcare, Sensors for Health Monitoring, 5, 259-287.
13. Bhugra, S., Chaudhury, S., & Lall, B. (2015). Use of leaf colour for drought stress analysis in rice. In 2015 Fifth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG) (pp. 1-4). IEEE.
14. Bradford, K & Hsiao, T. (1982). Physiological response to moderate stress. In: Lange OL, Nobel PS, Osmond CB, Ziegler H,ets. Encyclopedia of plant physiology. Physiological plant ecology. II. Water relations and carbon assimilation. New York, Berlin, Heidelberg: Springer, 263-324.
15. Broomhead, D., & Lowe, D. (1988). Multivariable functional interpolation and adaptive networks, complex systems, vol. 2.
16. Canna. (2023). The most occurring forms of plant stress-part 2. https://www.cannagardening.com/most_occurring_forms_plant_stress_part_2
17. Chen, X., Pang, T., Tao, H., Lin, M., & Yang, H. (2017). Prediction of apple internal qualities using hyperspectral imaging techniques. In 2017 International Conference on Advanced Mechatronic Systems (ICAMechS) (pp. 450-455). IEEE.
18. Cheng L, Zhu X, Gao W, Wang L. and Zhao G. (2016). Hyperspectral Estimation of Phosphorus Content in Apple Leaves Based on Random Forest Model. Journal of Fruit Science, 33, 1219-1229.
19. Cheng, W., Sun, D., Pu, H., and Liu, Y. (2016). LWT-Food Sci. Technol. 72, 322-329.
20. Conners, R. & Harlow, C. (1980). A theoretical comparison of texture algorithms. IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-2,3: 204-222.
21. Curran, P., Dungan, J., Gholz, H. (1990). Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiol, 7, 33–48. doi: 10.1093/treephys/7.1-2-3-4.33.
22. Ding, X., Liu, F., Zhang, C., et al. (2015). Detection of SPAD value of rape leaves based on hyperspectral imaging technology. Spectroscopy and Spectral Analysis, 35(2), 486-491.
23. Duan, N., Bai, Y., Sun, H., Wang, N., Ma, Y., Li, M., ... & Chen, X. (2017). Genome re-sequencing reveals the history of apples and supports a two-stage model for fruit enlargement. Nature communications, 8(1), 249.
24. Ellis, M. (2021). Apple tree irrigation- how to water an apple tree in the landscape. Gardening. https://www.gardeningknowhow.com/edible/fruits/apples/apple-tree-watering.htm.
25. ElMasry, G., Kamruzzaman, M., Sun, D.-W., Allen, P. (2012). Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: A review. Crit. Rev. Food Sci. Nutr, 52, 999–1023.
26. ElMasry, G., Wang, N., ElSayed, A., Ngadi, M. (2007). Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry. J. Food Eng, 81, 98–107. doi: 10.1016/j.jfoodeng.2006.10.016
27. Escobar -Gutierrez, A J, Zipperlin , B, Carbonne, F , Moing , A ,and Gaudillere , JP. (1998). Photosynthesis, carbon partitioning and metabolite content during drought stress in the peach seedling.Aust. J Plant Physiol, 25, 197-205.
28. Feng, X., Zhan, Y., Wang, Q., Yang, X., Yu, C., Wang, H., ... & He, Y. (2020). Hyperspectral imaging combined with machine learning as a tool to obtain high‐throughput plant salt‐stress phenotyping. The Plant Journal, 101(6), 1448-1461.
29. Feng, X., Chen, X., Bao, A. M., Sun, L., Wang, D., & Ma, Y. (2004). Analysis of the cotton physiological change and its hyperspectral response under the water stress condition. Arid Land Geography, 2, 250-255.
30. Grann, T. & Boyer, J. (1990). Very high CO2 partially restores photosynthesis in sunflowers at low water potentials. Planta, 181,378-384.
31. Green, D. (2022). Leaves turning transparent or translucent: The causes explained. https://thegardenhows.com/leaves-turning-transparent-or-translucent-the-causes-explained/.
32. Gupta, S., Ibaraki, Y., & Pattanayak, A. (2013). Development of a digital image analysis method for real-time estimation of chlorophyll content in micro propagated potato plants. Plant Biotechnol Rep, 7, 91–97.
33. Guo, A., Huang, W., Ye, H., Dong, Y., Ma, H., Ren, Y., & Ruan, C. (2020). Identification of wheat yellow rust using spectral and texture features of hyperspectral images. Remote Sensing, 12(9), 1419.
34. Jiang, B., Wang, P., Zhuang, S., Li, M., Li, Z., & Gong, Z. (2018). Detection of maize drought based on texture and morphological features. Computers and electronics in agriculture, 151, 50-60.
35. Haralick, R., Shanmugam, K. & Dinstein, I. (1973). Textural feature for image classification. IEEE Trans. Syst. Man Cybern., vol. SMC-3, 6, 610-621.
36. He, K., Zhang, X., Ren, S., Sun, J. (2016). Identify mappings in deep residual networks. Computer Vision and Pattern Recognition. arXiv:1603.05027.
37. He, J., Wang, J., & Liang, H. (1995). Effects of water stress on photochemical function and protein metabolism of photosystem II in wheat leaves. Physiologia Plantarum, 93, 771-777.
38. Hintzsche, H., & Stopper, H. (2012). Effects of terahertz radiation on biological systems. Critical Reviews in Environmental Science and Technology, 42(22), 2408-2434.
39. Holizadeh, A., Saberioon, M., BorVka, L., Wayayok, A., & Soom, M. (2017). Leaf chlorophyll and nitrogen dynamics and their relationship to lowland rice yield
40. for site-specific paddy management. Inf Process Agric, https://doi.org/10.1016/j.inpa.2017.08.002.
41. Huang, Y. (2017). Monitoring of nitrogen nutrition in wheat based on hyperspectral imaging.Nanjing Agricultural University.
42. Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: theory and applications. Neurocomputing, 70(1-3), 489-501.
43. Humeau-Heurtier. (2019). Texture feature extraction methods: A survey. IEEE Access, 7, 8975-9000.
44. Hussain, H. A., Men, S., Hussain, S., Chen, Y., Ali, S., Zhang, S., ... & Wang, L. (2019). Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Scientific reports, 9(1), 3890.
45. Jespersen, D., Zhang, J., & Huang, B. (2016). Chlorophyll loss associated with heat-induced senescence in bentgrass. Plant Sci, 249, 1–1.
46. Jia, Z., Ou, C., Sun, S., Wang, J., Liu, J., Li, M., Jia, S. & Mao, P. (2023). A novel approach using multispectral imaging for rapid development of seed pellet formulations to mitigate drought stress in alfalfa. Computers and Electronics in Agriculture, 212, 108136.
47. Jiang, H, Yoon, S., Zhuang, H., Wang, W., Li, Y. & Yang, Y. (2019). Spectrochim. Acta, Part A, 213,118-216.
48. Jin, X., Zarco-Tejada, P., Schmidhalter, U., Reynolds, M., Hawkesford, M., Varshney, R., Yang, T., Nie, C., Li, Z., Ming, B., Xiao, Y., Xie, Y., & Li, S. (2020). High-throughput estimation of crop traits: a review of ground and aerial phenotyping platforms. IEEE Geosci Remote Sens Mag. https://doi.org/10.1109/MGRS.2020.2998816.
49. Jones, H. (2004). Application of thermal imaging and infrared sensing in plant physiology and ecophysiology. Advances in Botanical Research, 41, 107–163.
50. Kamruzzaman, M., Makino, Y., Oshita, S. (2016). Hyperspectral imaging for real-time monitoring of water holding capacity in red meat. LWT-Food Sci. Technol, 66, 685–691.
51. Katsoulas, N., C. Kittas, G. Dimokas, and Ch. Lykas. (2006). Effect of irrigation frequency on rose flower production and quality. Bios. Eng, 93, 237–244.
52. Kim, D., Zhang, H., Zhou, H., Du, T., Wu, Q., Mockler, T. & Berezin, M. (2015). Highly sensitive image-derived indices of water-stressed plants using hyperspectral imaging in SWIR and histogram analysis. Sci Rep, 5, 15919. https://doi.org/10.1038/srep15919.
53. Lakso, A., Geyer, A. & Carpenter, S. (1984). Seasonal osmotic relations in apple leaves of different ages. J.Amer.Soc.Hort.Sci, 109, 544-547.
54. Lauer, M. & Boyer, J. (1992). Internal CO2 measures directly in leaves: abscisic acid and low leaf water potential cause opposing effects. Plant Physiology, 98, 1010-1016.
55. Li, Z., Liu, G., Zhang, X. (2013). Review of researches on the Valsa canker of apple trees. North. Fruits, 4, 13.
56. Lim, P., & Nam, H. (2007). Aging and senescence of the leaf organ. Journal of Plant Biology, 50, 291-300.
57. Lippmalm, R. (2002). Neural Nets for Computing.Acoustics, speech, and signal processing.IEEE International Conference on ICASSP, 88, 1-6.
58. Liu, D., Pu, H., Sun, D., Wang, L. & Zeng, X. (2014). Food Chem.160, 330-337.
59. Liu, G., Wei, X., Zhang, S., et al. (2019). Analysis of epileptic seizure detection method based on improved genetic algorithm optimisation back propagation neural network [J]. Journal of Biomedical Engineering, 36(1), 24-32.
60. Li, B., Wang, R., Ma, J., & Xu, W. (2020). Research on crop water status monitoring and diagnosis by terahertz imaging. Frontiers in Physics, 8, 571628.
61. Li, R., Lu, Y., Peters, J.M.R. et al. (2020). Non-invasive measurement of leaf water content and pressure–volume curves using terahertz radiation. Sci Rep, 10, 21028. https://doi.org/10.1038/s41598-020-78154-z
62. Li, J., Xi, B., Li, Y., Du, Q., & Wang, K. (2018). Hyperspectral Classification Based on Texture Feature Enhancement and Deep Belief Networks. Remote Sensing, 10(3), 396. MDPI AG. Retrieved from http://dx.doi.org/10.3390/rs10030396
63. Liu, X., Zhang, Z., Meng, F., & Zhang, Y. (2022). Fault diagnosis of wind turbine bearings Based on CNN and SSA–ELM. Journal of Vibration Engineering & Technologies, 1-17.
64. Loucks J. (2021). How to grow apple tree seedlings. SFGATE. https://homeguides.sfgate.com/grow-apple-tree-seedlings-59390.html.
65. Lowe, A., Harrison, N., & French, A. P. (2017). Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant methods, 13(1), 80.
66. Lu, Z., Zhang, Z., Zhang, X., Yang, W., Zhu, L., & Huang, C. (2022). Intelligent identification of cotton verticillium wilt based on spectral and image feature fusion.Research Square, 8(2). https://doi.org/10.21203/rs.3.rs-1903428/v1
67. Lu J, Zhou M, Gao Y, and Jiang H. (2018). Using hyperspectral imaging to discriminate yellow leaf curl disease in tomato leaves. Precision Agriculture, 19, 379-394. https://doi.org/10.1007/s11119-017-9524-7
68. Lu, C., & Zhang, J. (1999). Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants. Journal of Experimental Botany, 50(336), 1199-1206.
69. Mack, J., Schindler, F., Rist, F., Herzog, K., Töpfer, R., & Steinhage, V. (2018). Semantic labeling and reconstruction of grape bunches from 3D range data using a new RGB-D feature descriptor. Computers and Electronics in Agriculture, 155, 96-102.
70. Mirjalili, S., Mirjalili, S., & Lewis, A. (2014). Grey wolf optimizer[J]. Advances in engineering software. 69, 46-61.
71. Levenberg-Marquardtbackpropagation.https://www.mathworks.com/help/deeplearning/ref/trainlm.html;jsessionid=39efd735b2ae310e3e285a17b507.
72. Ma, C., Zhang, H. H., & Wang, X. (2014). Machine learning for big data analytics in plants. Trends in plant science, 19(12), 798-808.
73. Merzlyak, M. N., Gitelson, A. A., Chivkunova, O. B., Solovchenko, A. E., & Pogosyan, S. I. (2003). Application of reflectance spectroscopy for analysis of higher plant pigments. Russian Journal of plant physiology, 50, 704-710.
74. Mutanga, O., & Skidmore, A. K. (2007). Red edge shift and biochemical content in grass canopies. ISPRS Journal of Photogrammetry and Remote Sensing, 62(1), 34-42.
75. Ni, C., Li, Z., Zhang, X., Sun, X., Huang, Y., Zhao, L., ... & Wang, D. (2020). Online sorting of the film on cotton based on deep learning and hyperspectral imaging. Ieee Access, 8, 93028-93038.
76. Ozdemir A & Polat K. (2020). Deep Learning Applications for Hyperspectral Imaging: A Systematic Review. Journal of the Institute of Electronics and Computer, 2, 39-56. https://doi.org/10.33969/JIEC.2020.21004.
77. Pacumbaba R. O., Jr. & Beyl C. A. (2011). Changes in hyperspectral reflectance signatures of lettuce leaves in response to macronutrient deficiencies. Adv. Space Res, 48, 32–42. doi: 10.1016/j.asr.2011.02.020
78. Plaza, A., Martínez, P., Plaza, J., Pérez R. (2003). Spatial/spectral analysis of hyperspectral image data. In Advances in Techniques for Analysis of Remotely Sensed Data, 2003 IEEE Workshop on. IEEE.
79. Pearcy, M. & R, Hindle. (1989). A new method for the non-invasive three-dimensional measurement of human back movement. Clinical Biomechanics, 4(2), 73-39.ISSN 0268-0033.https://doi.org/10.1016/0268-0033(89)90042-9.
80. PIRSA. (2006). Irrigating Horticulture Crops with Reduced Water Supplies. Fact Sheet No. 18/06, www.pir.sa.gov.au/factsheets.
81. Ranney, T., Bassuk, N., & Whitlow, T. (1991). Osmotic adjustment and solute constituents in leaves and roots of water-stressed cherry (prunus)trees. J Amer.Soc.Hort.Sci,116 (4), 684-688.
82. Resonon Inc, Resonon. (2019). SpectrononPro Manual. Release 5.3.
83. Ristic, Z., Bukovnik, U., & Prasad, P. V. (2007). Correlation between heat stability of thylakoid membranes and loss of chlorophyll in winter wheat under heat stress. Crop Science, 47(5), 2067-2073.
84. Ru, C., Li, Z., & Tang, R. (2019). A hyperspectral imaging approach for classifying geographical origins of rhizoma atractylodis macrocephalae using the fusion of spectrum-image in VNIR and SWIR ranges (VNIR-SWIR-FuSI). Sensors, 19(9), 2045.
85. Sabzi, S., Pourdarbani, R., Rohban, M. H., Fuentes-Penna, A., Hernández-Hernández, J. L., & Hernández-Hernández, M. (2021). Classification of Cucumber Leaves Based on Nitrogen Content Using the Hyperspectral Imaging Technique and Majority Voting. Plants, 10(5), 898. https://doi.org/10.3390/plants10050898
86. Sachar, S., & Kumar, A. (2021). Survey of feature extraction and classification techniques to identify plant through leaves. Expert Systems with Applications, 167, 114181.
87. Schuerger, A., Capelle, G., Benedetto, J., Mao, C., Chi, N., & Evans, M. (2003). Comparison of two hyperspectral imaging and two laser-induced fluorescence instruments for the detection of zinc stress and chlorophyll concentration in Bahia grass (Paspalum notatum Flugge). Remote Sens Environ, 2003, 84(4), 572–88.
88. Shao C. (2020). Data classification by quantum radical-basis-function networks. Physics Review, 102, 042418.
89. Singh, S. & Hemachandran, K. (2012). Content-Based Image Retrieval using Color Moment and Gabor Based Image Retrieval using Color Moment and Gabor Texture Feature.IJCSI International Journal of Computer Science Issues.ISSN (Online): 1694-0814. www.IJCSI.org. 9(5), 1.
90. Smart, R. & Bingham, G. (1974). Rapid estimates of relative water content. Plant Physiology, 53(2), 258-260.
91. Sun, J., Yang, L., Yang, X., Wei, J., Li, L., Guo, E. & Kong, Y. (2021). Using Spectral Reflectance to Estimate the Leaf Chlorophyll Content of Maize Inoculated With Arbuscular Mycorrhizal Fungi Under Water Stress. Front. Plant Sci, 12, 646173. doi: 10.3389/fpls.2021.646173.
92. Sun H, Zheng T, Liu N, et al. (2018). Hyperspectral image detection of the vertical distribution of chlorophyll content in potato leaves. Transactions of the Chinese Society of Agricultural Engineering, 34(1), 149-156.
93. Tan, K., Wang, R., Li, M., & Gong, Z. (2019). Discriminating soybean seed varieties using hyperspectral imaging and machine learning. Journal of Computational Methods in Sciences and Engineering, 19(4), 1001-1015.
94. The Home Depot. (2021). How to grow trees. https://www.homedepot.com/c/ah/how-to-grow-apples/9ba683603be9fa5395fab901f33a6977.
95. Tian, H.,Wang, C., Hao, M.,et al. (2013). Rapid positive potato dry matter content detection based on spectral differential filtering and multivariate calibration[J].Inner Mongolia Agricultural University Journal (Natural Science Edition), 34(5), 93-97.
96. Tumer, A. & Akkus, A. (2019). Application of Radial Basis Function Networks with Feature Selection for GDP per Capita Estimation Based on Academic Parameters. International Journal of Computer Systems Science & Engineering, 3, 145-150.
97. Wang, Y., Li, L., Shen, S., Liu, Y., Ning, J. & Zhang, Z., 2020. Rapid detection of the quality index of postharvest fresh tea leaves using hyperspectral imaging. Journal of the Science of Food and Agriculture. 100, 3803-3811.
98. Wang J. (2015). Research on nondestructive testing of Tan mutton tenderness based on spectral image information fusion technology[D].Yinchuan: Ningxia University.
99. Wang, L., Liu, D., Pu, H., Sun, D. W., Gao, W., & Xiong, Z. (2015). Use of hyperspectral imaging to discriminate the variety and quality of rice. Food analytical methods, 8, 515-523.
100. Wang, Z., Liu, H., & Duan, H. (2006). Study on Hyperspectral Inversion Model of Soybean Chlorophyll Content. Agriculture Engineering News, 8, 16-21.
101. Water Potential. (2022). Advantages and disadvantages of the pressure chamber. European Medical. https://www.europeanmedical.info/water-potential/ii-advantages-and-disadvantages-of-the-pressure-chamber.html
102. Wang, Z., Quebedeaux, B. & Stutte, G. (1995). Osmoti c adjustment: Effect of water stress on carbohydrates in apple under water stress. Aust. J. Plant Physiol, 22, 747- 754(1995).
103. Wen, P., Li, H., Lei, H., & Zhang, F. (2021). High spectral data acquisition and pretreatment method of water-injection mutton. Journal of Inner Mongolia Agricultural University (Natural Science Edition).doi:10.16853 /j.cnki.1009-3575.2021.02.015.42(2).
104. Wen, X., Zhu, X., Yu, R., Xiong, J., Gao, D., Jiang, Y., Yang, G. (2019). Visualisation of chlorophyll content distribution in apple leaves based on hyperspectral imaging technology. Agricultural Sciences, 10, 6.
105. Williams, P. & Norris, K. (2001). Near-infrared technology in the agricultural and food industries. Vol. 2, edited by St. Paul, Minn. American Assn. of Cereal Chemists.
106. Willis Orchard Company. (2021). Apple seedlings. https://www.willisorchards.com/product/apple-seedlings#.YZjPaJfYtPY.
107. Wu, X., Wu, X., Huang, H., Zhang, F., & Wen, Y. (2023). Characterization of Pepper Ripeness in the Field Using Hyperspectral Imaging (HSI) with Back Propagation (BP) Neural Network and Kernel Based Extreme Learning Machine (KELM) Models. Analytical Letters, 1-16.
108. Xu, J., & Gowen, A. (2020). Spatial‐spectral analysis method using texture features combined with PCA for information extraction in hyperspectral images. Journal of Chemometrics, 34(2), e3132.
109. Yamaguchi, I., Cohen, J. D., Culler, A. H., Quint, M., Slovin, J. P., Nakajima, M., ... & Sakagami, Y. (2010). 4.02–plant hormones. Comprehensive Natural Products II, Chemistry and Biology (ed. Liu HW & Mander L.), 9-125.
110. Yamashita, H., Sonobe, R., Hirono, Y. et al. (2020). Dissection of hyperspectral reflectance to estimate nitrogen and chlorophyll contents in tea leaves based on machine learning algorithms. Sci Rep, 10, 17360. https://doi.org/10.1038/s41598-020-73745-2
111. Yang, X., Hong, H., You, Z., & Cheng, F. (2015). Spectral and image integrated analysis of hyperspectral data for waxy corn seed variety classification. Sensors, 15(7), 15578-15594.
112. Yin, W., Chu, Z., Zhu, H., Zhao, Y.,& Yong, H. (2017). Application of near-infrared hyperspectral imaging to discriminate different geographical origins of Chinese wolfberries. Plos One.12(7), e0180534.
113. Yu, C., Li, F., Chang, C. I., Cen, K., & Zhao, M. (2020). Deep 2D convolutional neural network with deconvolution layer for hyperspectral image classification. In Communications, Signal Processing, and Systems: Proceedings of the 2018 CSPS Volume II: Signal Processing 7th (pp. 149-156). Springer Singapore.
114. Yu H, Wang R, Yin Y, Liu Y. (2018). Prediction of polysaccharide and total sugar in wolfberry based on spectral and texture information from the hyperspectral image. Journal of Nuclear Agricultural Sciences, 32(3), 0523-0531.
115. Yuan, X., Zhang, X., Zhang, N., Ma, R., He, D., Bao, H., & Sun, W. (2023). Hyperspectral Estimation of SPAD Value of Cotton Leaves under Verticillium Wilt Stress Based on GWO–ELM. Agriculture, 13(9), 1779.
116. Zhang, H., Zhang, W., Zhang, Y. (2022). Research on classification method of flue-cured tobacco based on the fusion of hyperspectral and texture features[J]. Acta Tabacaria Sinica, 28(3). doi:10.16472/j.chinatobacco.2021.T0139.
117. Zhang, H., Ge, Y., Xie, X., Atefi, A., Wijewardane, N. K., & Thapa, S. (2022). High throughput analysis of leaf chlorophyll content in sorghum using RGB, hyperspectral, and fluorescence imaging and sensor fusion. Plant Methods, 18(1), 1-17.
118. Zhang, J., Zhang, W., Xiong, S., Song, Z., Tian, W., Shi, L. & Ma, X. (2021). Comparison of the new hyperspectral index and machine learning models for winter wheat leaf water content prediction. Plant Methods, 17, 34. https://doi.org/10.1186/s13007-021-00737-2.
119. Zhu, H., Chu, B., Zhang, C., Liu, F., Jiang, L., & He, Y. (2017). Hyperspectral imaging for presymptomatic detection of tobacco disease with successive projections algorithm and machine-learning classifiers. Scientific reports, 7(1), 4125.
Published
2024-01-23
How to Cite
An, Y., & Wang, R. (2024). Clarification of Water Stress in Apple Seedlings Using HSI Texture with Machine Learning Technique. European Scientific Journal, ESJ, 25, 518. Retrieved from https://eujournal.org/index.php/esj/article/view/17699
Section
ESI Preprints