Test de Germination des Graines de Ricin (Ricinus communis L.) Sous Différentes Contrainte Abiotiques
Abstract
Ricinus communis L., est utilisé comme biocarburant et possède de nombreuses vertus. Cependant, les récentes recherches menées en Afrique de l’Ouest fournissent peu d’information sur ses potentialités encore moins sur sa croissance. L’objectif de cette étude est d’évaluer la réponse des graines de ricin à différentes méthodes de prétraitement. Le dispositif utilisé est un bloc complètement randomisé à quatre répétitions et neuf traitements. Les traitements ont été constitués de graines témoins ; de graines scarifiées à la main (SM) ; de graines trempées dans l’eau de robinet à la température ambiante pendant 12 heures (ER12h), pendant 24 heures (ER24h), pendant 48 heures (ER48h) ; de graines trempées dans l’eau préalablement portée à ébullition ( ̴ 100°C) pendant 20 minutes (EC20min), pendant 40 minutes (EC40min) ; de graines trempées dans l’eau à la température ambiante après scarification de celles-ci, pendant 24 heures (SM24h), pendant 48 heures (SM48h). Vingt graines ont été semées par traitement et les observations ont porté d’une part, sur la capacité de germination, le temps moyen de germination, le délai de germination et le coefficient de vélocité de germination ; et d’autre part sur la croissance des jeunes plants. Les résultats ont montré que les graines de ricin ne présentent pas réellement de résistance mécanique, ce qui s’est traduit par une capacité de germination élevée après un trempage à l’eau pendant 12 heures. La scarification appliquée uniquement et le traitement thermique des graines n’ont pas favorisé une bonne germination des graines. Le temps de germination moyen a été plus court au niveau de la graine scarifiée avec un temps d’imbibition plus long. Un pré trempage des graines à l’eau chaude pendant 20 minutes n’a pas permis la germination des graines, contrairement à celui qui a duré 40 minutes. La croissance des plantes et le rythme d’apparition des feuilles ont été plus rapide avec les graines scarifiées et trempées à l’eau. Cette étude a montré que la multiplication par graine de cette espèce pourrait être limitée par un prétraitement à la chaleur.
Ricinus communis L. is used as a biofuel and has many virtues. In recent research conducted in West Africa, little information exists on its potential and even less about its growth. The objective of this study was to evaluate methods of breaking seed dormancy and stimulating the growth of R. communis. The device used is a completely randomized block in four repetitions and nine treatments. The treatments consist of control seeds, hand-scarified seeds (SM), seeds soaked in tap water at ambient temperature for 12 hours (ER12h), for 24 hours (ER24h), for 48 hours (ER48h); seeds soaked in water previously boiled ( ̴ 100°C) for 20 minutes (EC20min), for 40 minutes (EC40min); seeds soaked in water at ambient temperature after scarifying the seeds for 24 hours (SM24h), for 48 hours (SM48h). Twenty seeds of R. communis were sown per treatment and observations were made on the one hand on germination capacity, mean germination time, germination time and velocity coefficient; and on the other hand, on the growth of young plants. The results showed that the castor seeds did not really show any mechanical resistance which resulted in a high germination capacity after soaking in water for 12 hours. Scarification alone and heat treatment of the seeds does not promote good seed germination. The average germination time is shorter when the seed is scarified with a longer soaking time. Soaking in hot water for 20 minutes did not allow the seeds to germinate, unlike 40 minutes. Plant growth was faster with scarified and water-soaked seeds. This study showed that multiplication by seed of this species could be limited by heat pretreatment.
Downloads
Metrics
PlumX Statistics
References
2. Amani, A., Inoussa, M. M., Guimbo, I. D., Mahamane, A., Saadou, M., & Lykke, A. M. (2015). Germination and growth of four species of Combretaceae in nursery. Tropicultura, 33(2), 135–145.
3. Association, I. S. T. (1985). International rules for seed testing. Rules 1985. Seed Science and Technology, 13(2), 299–513.
4. Borras Jr, S. M., Fig, D., & Suárez, S. M. (2011). The politics of agrofuels and mega-land and water deals: insights from the ProCana case, Mozambique. Review of African Political Economy, 38(128), 215–234.
5. Burley, H., & Bebb, A. (2010). Africa: up for grabs–the scale and impact of land grabbing for agrofuels. Friends of the Earth Europe, Brussels, Belgium.
6. Carvalho, M., Roza, F. A., Mielke, M. S., de Almeida, A.-A. F., Gomes, L. M. C., & Gomes, F. P. (2019). Ricinus communis L.: Water Use Efficiency, Carbon Assimilation and Water Relations on Deficit Irrigation. Journal of Experimental Agriculture International, 1–15.
7. Cheema, N. M., Malik, M. A., Qadir, G., Rafique, M. Z., & Nawaz, N. (2010). Influence of temperature and osmotic stress on germination induction of different castor bean cultivars. Pakistan J. Bot, 42, 4035–4041.
8. Datinon, B., Glitho, A., Tamò, M., Amevoin, K., Goergen, G., & Kpindou, O. (2013). Inventory of major insects of Jatropha curcas L. (Euphorbiaceae) and their natural enemies in Southern Benin. J Agric Biol Sci, 8, 711–718.
9. Diedhiou, I., Bayala, R., Sagna, M. D., & Madiallacke, D. P. (2018). Flowering and fruiting seasonal changes of six accessions of Jatropha curcas L. in a semi-arid region of Senegal. Journal of Natural History Museum, 30, 1–14.
10. Diédhiou, I., Diallo, D., Mbengue, A., Hernandez, R. R., Bayala, R., Diéme, R., Diédhiou, P. M., & Sène, A. (2017). Allometric equations and carbon stocks in tree biomass of Jatropha curcas L. in Senegal’s Peanut Basin. Global Ecology and Conservation, 9, 61–69. https://doi.org/10.1016/j.gecco.2016.11.007
11. German, L., Schoneveld, G. C., & Pacheco, P. (2011). The social and environmental impacts of biofuel feedstock cultivation: evidence from multi-site research in the forest frontier. Ecology and Society, 16(3).
12. Goyal, N., Pardha-Saradhi, P., & Sharma, G. (2014). Can adaptive modulation of traits to urban environments facilitate Ricinus communis L. invasiveness? Environmental Monitoring and Assessment, 186. https://doi.org/10.1007/s10661-014-3978-0
13. Kaushik, N., Kaushik, N., & Kumar, S. (2005). Jatropha Surcas L.: Silviculture and Uses. Agrobios (India).
14. Kemp, R. H. (1975). Seed pretreatment and principles of nursery handling. FAO/DANIDA Training Course on Forest Seed Collection and Handling, Chiang Mai (Thailand), 17 Feb 1975.
15. Koutroubas, S. D., Papakosta, D. K., & Doitsinis, A. (2000). Water requirements for castor oil crop (Ricinus communis L.) in a Mediterranean climate. Journal of Agronomy and Crop Science, 184(1), 33–41.
16. Kumar, P. V., Ramakrishna, Y. S., Rao, B. V. R., Victor, U. S., Srivastava, N. N., & Rao, A. V. M. S. (1997). Influence of moisture, thermal and photoperiodic regimes on the productivity of castor beans (Ricinus communis L.). Agricultural and Forest Meteorology, 88(1–4), 279–289.
17. Kgathi, D. L., Mfundisi, K. B., Mmopelwa, G., & Mosepele, K. (2012). Potential impacts of biofuel development on food security in Botswana: A contribution to energy policy. Energy Policy, 43, 70–79.
18. Matondi, P., Havenevik, K., & Beyene, A. (2011). Introduction: Biofuels, Land Grabbing and Food Security in Africa. Matondi, Prosper. B., Havnevik, Kjell and Atakilte Beyene, Eds. Biofuels, Land Grabbing and Food Security in Africa. Uppsala: Nordic Africa Institute, 1–19.
19. Misra, M., & Misra, A. N. (2010). Jatropha: the biodiesel plant biology, tissue culture and genetic transformation—a review. Int J Pure Appl Sci Technol, 1(1), 11–24.
20. Msaakpa, T. S., Obasi, M. O., & Kortse, P. A. (2013). Dormancy breaking and germination of castor (Ricinus communis L.) seed. Journal of Agricultural and Biological Science, 8(5), 391–398.
21. Njehoya, C. A., Bourou, S., Awono, P. K., & Bouba, H. (2014). Évaluation du potentiel de germination de Moringa oleifera dans la zone soudano-guinéenne du Cameroun. Journal of Applied Biosciences, 74, 6141-6148.
22. Norden, N., Daws, M. I., Antoine, C., Gonzalez, M. A., Garwood, N. C., & Chave, J. (2009). The relationship between seed mass and mean time to germination for 1037 tree species across five tropical forests. Functional Ecology, 23(1), 203–210.
23. Papazoglou, E. G., Alexopoulou, E., Papadopoulos, G. K., & Economou-Antonaka, G. (2020). Tolerance to Drought and Water Stress Resistance Mechanism of Castor Bean. Agronomy, 10(10), 1580.
24. Scarpa, A., & Guerci, A. (1982). Various uses of the castor oil plant (Ricinus communis L.) a review. Journal of Ethnopharmacology, 5(2), 117–137.
25. Severino, L. S., & Auld, D. L. (2014). Study on the effect of air temperature on seed development and determination of the base temperature for seed growth in castor (“Ricinus communis” L.). Australian Journal of Crop Science, 8(2), 290–295.
26. Singh, K., Singh, B., & Tuli, R. (2013). Sodic soil reclamation potential of Jatropha curcas: a long-term study. Ecological Engineering, 58, 434–440.
27. Tudor, V., Asănică, A., Teodorescu, R. I., Gidea, M., TĂNĂSESCU, C., Tudor, A. D., & ȚIU, J. V. (2017). Germination capacity of some Lycium barbarum L. and Lycium chinense Mill. biotypes seeds. Romanian Biotechnological Letters, 22(1), 12191.
28. Vallejos, M., Rondanini, D., & Wassner, D. F. (2011). Water relationships of castor bean (Ricinus communis L.) seeds related to final seed dry weight and physiological maturity. European Journal of Agronomy, 35(2), 93–101. https://doi.org/https://doi.org/10.1016/j.eja.2011.04.003
29. Sagna, C. V. N. 2019. Etude du bouturage et de la germination de Guiera senegalensis J.F. Gmel. et Piliostigma reticulatum (DC.) Hochst. Mém. de fin d'études : Eaux et Forêts : ISFAR ex ENCR, Bambey (Bambey, Sénégal). 42 p.
30. Zhou, G., Ma, B. L., Li, J., Feng, C., Lu, J., & Qin, P. (2010). Determining salinity threshold level for castor bean emergence and stand establishment. Crop Science, 50(5), 2030–2036.
Copyright (c) 2024 Roger Bayala, Ibrahima Diedhiou, Laopé Ambroise Casimir Siene, Kouakou Abessika Georges Yao, Christine Valentine Noella Sagna
This work is licensed under a Creative Commons Attribution 4.0 International License.