Lamiaceae Family Plants as Natural Solutions for Inflammation and Blood Sugar Management

  • Vasiliki Lagouri Laboratory of Chemistry, Biochemistry and Cosmetic Science, Department of Biomedical Medicine, University of West Attica, Greece Perrotis College/ American Farm School, Greece
  • Sara Oumenoune Tebbi Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurance Qualité. Faculté SNVST, Université de Bouira, Algeria
  • Armando Caseiro Polytechnic Institute of Coimbra, Coimbra Health School, Biomedical Laboratory Sciences, Portugal LABINSAÚDE - Research Laboratory for Applied Health Sciences, Polytechnic Institute of Coimbra, Portugal Molecular Physical-Chemistry R&D Unit, School of Science and Technology, University of Coimbra, Portugal
  • Maria Trapali Laboratory of Chemistry, Biochemistry and Cosmetic Science, Department of Biomedical Medicine, University of West Attica, Greece
Keywords: Lamiaceae Family, anti-diabetic activity, Antioxidant potential, Anti-inflammatory properties

Abstract

The Lamiaceae family, including common herbs like rosemary and mint, is being investigated for its potential health benefits. In addition to numerous health benefits, research is looking into these plants' anti-inflammatory qualities and potential impacts on blood sugar regulation. More specifically, the Greek endemic Lamiaceae plants are proven to be of great importance, regarding their bioactive compounds and the antioxidant, antidiabetic and anti-inflammatory properties they have. The study's objective was to compile information from the literature regarding the anti-inflammatory, antidiabetic, and antioxidant properties of Origanum rotundifolium, Rosmarinus officinalis, Lavendula angustifolia, and Thymus serpyllum. Lavender angustifolia is used for many traditional medical and cosmetic products. Several studies demonstrated strong anti-inflammatory mechanisms exhibited by Rosmarinus officinalis. Leukocyte migration was found to be significantly inhibited in vivo by rosemary essential oil and extract. Changes in the gut microbiota induced by essential oils rosemary as prebiotics in mice regulated cardiovascular and metabolic factors, which focus on the potential of these nutraceuticals for reducing Ischemic heart disease risk in patients affected by type-2 diabetes mellitus. A mixture of Origanum majorana and Origanum vulgare plants investigated antidiabetic activities in zebrafish. The Lamiaceae family provides a natural source of substances that may be used in functional foods. These functional meals have the potential to improve general health and help manage chronic illnesses. The precise mechanisms of action of these plants and the best doses for use in functional food applications require more investigation.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

PlumX Statistics

References

1. Abdelrahman, N., El-Banna, R., Arafa, M., & Hady, M. (2020). Hypoglycemic efficacy of *Rosmarinus officinalis* and/or *Ocimum basilicum* leaves powder as a promising clinico-nutritional management tool for diabetes mellitus in Rottweiler dogs. *Veterinary World*, 13(1), 73-79. https://doi.org/10.14202/vetworld.2020.73-79
2. Abu-Al-Basal, M. A. (2010). Healing potential of *Rosmarinus officinalis* L. on full-thickness excision cutaneous wounds in alloxan-diabetic BALB/c mice. *Journal of Ethnopharmacology*, 131(2), 443-450.
3. Ahmed, H. M., & Babakir-Mina, M. (2020). Investigation of rosemary herbal extracts (*Rosmarinus officinalis*) and their potential effects on immunity. *Phytotherapy Research*, 34(8), 1829-1837. https://doi.org/10.1002/ptr.6648
4. Akshay, K., Swathi, K., Bakshi, V., & Boggula, N. (2019). *Rosmarinus officinalis* L.: An updated review of its phytochemistry and biological activity. *Journal of Drug Delivery and Therapeutics*, 9(1), 323-330. http://dx.doi.org/10.22270/jddt.v9i1.2218
5. Alamgeer, M. (2014). Evaluation of hypoglycemic activity of *Thymus serpyllum* Linn in glucose-treated mice. *International Journal of Basic Medical Sciences and Pharmacy (IJBMSP)*, 3(2).
6. Aras, A., Silinsin, M., Bingol, M. N., & Bursal, E. (2017). Identification of bioactive polyphenolic compounds and assessment of antioxidant activity of *Origanum acutidens*. *International Letters of Natural Sciences*, 66, 1-8.
7. Azhar, J., John, P., & Bhatti, T. (2022). *Thymus serpyllum* exhibits anti-diabetic potential in streptozotocin-induced diabetes mellitus type 2 mice: A combined biochemical and in vivo study. *Nutrients*, 14(17), 3561. https://doi.org/10.3390/nu14173561
8. Bakirel, T., Bakirel, U., Keleş, O. U., Ülgen, S. G., & Yardibi, H. (2008). In vivo assessment of antidiabetic and antioxidant activities of rosemary (*Rosmarinus officinalis*) in alloxan-diabetic rabbits. *Journal of Ethnopharmacology*, 116(1), 64-73.
9. Batiha, G. E., Teibo, J. O., Wasef, L., Shaeen, H. M., Akomolafe, A. P., Teibo, T. K. A., Al-Kuraishy, H. M., Al-Garbeeb, A., Alexiou, A., & Papadakis, M. (2023). A review of the bioactive components and pharmacological properties of *Lavandula* species. *Naunyn-Schmiedeberg's Archives of Pharmacology*, 396(4), 1-24. https://doi.org/10.1007/s00210-023-02392-x
10. Benincá, J. P., Dalmarco, J. B., Pizzolatti, M. G., & Fröde, T. S. (2011). Analysis of the anti-inflammatory properties of *Rosmarinus officinalis* L. in mice. *Food Chemistry*, 124, 468-475.
11. Bhattarai, N., Kumbhar, A. A., Pokharel, Y. R., & Yadav, P. N. (2021). Anticancer potential of coumarin and its derivatives. *Mini Reviews in Medicinal Chemistry*, 21(19), 2996-3029. https://doi.org/10.2174/1389557521666210405160323
12. Bourkoula, A., Konsta, E., Papadopoulou, A., & Trapali, M. (2021). Lipidic classes involved in diabetes mellitus. *Novel Research in Sciences*, 8(2), NRS.000685. https://doi.org/10.31031/NRS.2021.08.000685
13. But, V. M., Bulboacă, A. E., Rus, V., Ilyés, T., Gherman, M. L., & Bolboacă, S. D. (2023). Anti-inflammatory and antioxidant efficacy of lavender oil in experimentally induced thrombosis. *Thrombosis Journal*, 21(1), Article 85. https://doi.org/10.1186/s12959-023-00516-0
14. De Oliveira, J. R., Camargo, S. E. A., & de Oliveira, L. D. (2019). *Rosmarinus officinalis* L. (rosemary) as therapeutic and prophylactic agent. *Journal of Biomedical Science*, 26(1), Article 5. https://doi.org/10.1186/s12929-019-0499-8
15. Dimopoulos, P., Raus, T., Bergmeier, E., Constantinidis, T., Iatrou, G., Kokkini, S., Strid, A., & Tzanoudakis, D. (2013). *Vascular plants of Greece: An annotated checklist*. Botanic Garden and Botanical Museum Berlin-Dahlem & Hellenic Botanical Society.
16. Dimopoulos, P., Raus, T., Bergmeier, E., Constantinidis, T., Iatrou, G., Kokkini, S., Strid, A., & Tzanoudakis, D. (2016). *Vascular plants of Greece: An annotated checklist. Supplement*. *Willdenowia*, 46(3), 301–347. https://doi.org/10.3372/wi.46.46303
17. Dobros, N., Zawada, K. D., & Paradowska, K. (2022). Phytochemical profiling, antioxidant, and anti-inflammatory activity of plants belonging to the *Lavandula* genus. *Molecules*, 28(1), 256. https://doi.org/10.3390/molecules28010256
18. Erenler, R., Meral, B., Sen, O., Elmastaş, M., Aydın, A., Eminagaoglu, O., & Topcu, G. (2017). Bioassay-guided isolation, identification of compounds from *Origanum rotundifolium* and investigation of their antiproliferative and antioxidant activities. *Pharmaceutical Biology*, 55(1), 1646-1653. https://doi.org/10.1080/13880209.2017.1310906
19. Gaya, M., Repetto, V., Toneatto, J., Anesini, C., & Piwien-Pilipuk, G. (2013). Antiadipogenic effect of carnosic acid, a natural compound present in *Rosmarinus officinalis*, is exerted through the C/EBPs and PPARγ pathways at the onset of the differentiation program. *Biochimica et Biophysica Acta (BBA) - General Subjects*, 1830(6), 3796-3806.
20. Gonçalves, C., Fernandes, D., Silva, I., & Mateus, V. (2022). Potential anti-inflammatory effect of *Rosmarinus officinalis* in preclinical in vivo models of inflammation. *Molecules*, 27(3), 609. https://doi.org/10.3390/molecules27030609
21. Gutiérrez, R., Jerónimo, F., Soto, J., Ramírez, A., & Mendoza, M. (2021). Optimization of ultrasonic-assisted extraction of polyphenols from the polyherbal formulation of *Cinnamomum verum*, *Origanum majorana*, and *Origanum vulgare* and their anti-diabetic capacity in zebrafish (*Danio rerio*). *Heliyon*, 8(1), e08682. https://doi.org/10.1016/j.heliyon.2021.e08682
22. Habán, M., Korczyk-Szabó, J., Certekov, S., & Ražná, K. (2023). *Lavandula* species, their bioactive phytochemicals, and their biosynthetic regulation. *International Journal of Molecular Sciences*, 24, 8831. https://doi.org/10.3390/ijms24108831
23. Hajhashemi, V., Ghannadi, A., & Sharif, B. (2023). Anti-inflammatory and analgesic properties of the leaf extracts and essential oil of *Lavandula angustifolia* Mill. *Journal of Ethnopharmacology*, 89(1), 67-71. https://doi.org/10.1016/s0378-8741(03)00234-4
24. Issa, A., Mohammad, M., Hudaib, M., & Bustanji, Y. (2011). A potential role of *Lavandula angustifolia* in the management of diabetic dyslipidemia. *Journal of Medicinal Plants Research*, 5(16), 3876-3882.
25. Khalil, O. A., Ramadan, K. S., Danial, E. N., Alnahdi, H. S., & Ayaz, N. O. (2012). Antidiabetic activity of *Rosmarinus officinalis* and its relationship with the antioxidant property. *African Journal of Pharmacy and Pharmacology*, 6(14), 1031-1036.
26. Khnissi, S., Bomboi, G., Khémiri, I., Ben Salem, I., Dattena, M., Sai, S., Ben Mustapha, S., Cabiddu, A., & Lassoued, N. (2023). Incorporation of fresh leaves of wormwood (*Artemisia herba-alba*) and/or rosemary (*Rosmarinus officinalis*) in the diet of rams: Effect on testicular function, sexual behavior, and blood parameters. *Food Science & Nutrition*, 11(6), 3121-3130. https://doi.org/10.1002/fsn3.3293
27. Koycheva, I., Vasileva, L., Amirova, K., Marchev, A., Balcheva-Sivenova, Z., & Georgiev, M. (2021). Biotechnologically produced *Lavandula angustifolia* Mill. extract rich in rosmarinic acid resolves psoriasis-related inflammation through Janus kinase/signal transducer and activator of transcription signaling. *Frontiers in Pharmacology*, 12, 680168. https://doi.org/10.3389/fphar.2021.680168
28. Lari, Z., Hajimonfarednejad, M., Riasatian, M., Abolhassanzadeh, Z., Iraji, A., Vojoud, M., Heydari, M., & Shams, M. (2020). Efficacy of inhaled *Lavandula angustifolia* Mill. essential oil on sleep quality, quality of life, and metabolic control in patients with diabetes mellitus type II and insomnia. *Journal of Ethnopharmacology*, 251, 112560. https://doi.org/10.1016/j.jep.2020.112560
29. Letsiou, S., Trapali, M., Tebbi, S. O., & Benaida-Debbache, N. (2023). A simple and robust LC-ESI single quadrupole MS-based method to analyze polyphenols in plant extracts using deep eutectic solvents. *MethodsX*, 11, 102303.
30. Letsiou, S., Trapali, M., Vougiouklaki, D., Tsakni, A., Antonopoulos, D., & Houhoula, D. (2023). Antioxidant profile of *Origanum dictamnus* L. exhibits antiaging properties against UVA irradiation. *Cosmetics*, 10(5), 124. https://doi.org/10.3390/cosmetics10050124
31. Leyva-Lopez, N., Gutiérrez-Grijalva, E. P., Vazquez-Olivo, G., & Heredia, J. B. (2017). Essential oils of oregano: Biological activity beyond their antimicrobial properties. *Molecules*, 22(6), 989. https://doi.org/10.3390/molecules22060989
32. Ma, B., Whiteford, J. R., Nourshargh, S., & Woodfin, A. (2016). Underlying chronic inflammation alters the profile and mechanisms of acute neutrophil recruitment. *Journal of Pathology*, 240(3), 291-303. https://doi.org/10.1002/path.4776
33. Maietta, M., Colombo, R., Corana, F., & Papetti, A. (2018). Cretan tea (*Origanum dictamnus* L.) as a functional beverage: An investigation on antiglycative and carbonyl trapping activities. *Food & Function*, 9, 1545–1556.
34. Mengoni, E. S., Vichera, G., Rigano, L. A., & Rodriguez-Puebla, M. L. (2011). Suppression of COX-2, IL-1β, and TNF-α expression and leukocyte infiltration in inflamed skin by bioactive compounds from *Rosmarinus officinalis* L. *Fitoterapia*, 82(3), 414-421.
35. Naghdi, F., Gholamnezhad, Z., Boskabady, M., & Bakhshesh, M. (2018). Muscarinic receptors, nitric oxide formation, and cyclooxygenase pathway involved in tracheal smooth muscle relaxant effect of hydro-ethanolic extract of *Lavandula angustifolia* flowers. *Biomedicine & Pharmacotherapy*, 102, 1221-1228. https://doi.org/10.1016/j.biopha.2018.04.004
36. Pandur, E., Balatinácz, A., Micalizzi, G., Mondello, L., Horváth, A., Sipos, K., & Horváth, G. (2021). Anti-inflammatory effect of lavender (*Lavandula angustifolia* Mill.) essential oil prepared during different plant phenophases on THP-1 macrophages. *BMC Complementary Medicine and Therapies*, 21(1), 287. https://doi.org/10.1186/s12906-021-03461-5
37. Perra, M., Fancello, L., Castangia, I., Allaw, M., Escribano-Ferrer, E., Peris, J., Usach, I., Manca, M., Koycheva, I., Georgiev, M., & Manconi, M. (2022). Formulation and testing of antioxidant and protective effect of hyalurosomes loading extract rich in rosmarinic acid biotechnologically produced from *Lavandula angustifolia* Miller. *Molecules*, 27(8), 2423. https://doi.org/10.3390/molecules27082423
38. Picos-Salas, M., Heredia, J., Leyva-López, N., Ambriz-Pérez, D., & Gutiérrez-Grijalva, G. (2021). Extraction processes affect the composition and bioavailability of flavones from Lamiaceae plants: A comprehensive review. *Processes*, 9, 1675. https://doi.org/10.3390/pr9091675
39. Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative stress: Harms and benefits for human health. *Oxidative Medicine and Cellular Longevity*, 2017, 8416763. https://doi.org/10.1155/2017/8416763
40. Salaria, D., Rolta, R., Lal, U. R., Dev, K., & Kumar, V. (2023). A comprehensive review on traditional applications, phytochemistry, pharmacology, and toxicology of *Thymus serpyllum*. *Indian Journal of Pharmacology*, 55(6), 385-394. https://doi.org/10.4103/ijp.ijp_220_22
41. Sánchez-Quintero, M., Delgado, J., Medina-Vera, D., Becerra-Muñoz, V., Queipo-Ortuño, M., Estévez, M., Plaza-Andrades, I., Rodríguez-Capitán, J., Sánchez, P., Crespo-Leiro, M., Jiménez-Navarro, M., & Pavón-Morón, F. (2022). Beneficial effects of essential oils from the Mediterranean diet on gut microbiota and their metabolites in ischemic heart disease and type-2 diabetes mellitus. *Nutrients*, 14(21), 4650. https://doi.org/10.3390/nu14214650
42. Solomou, A. D., Giannoulis, K. D., Skoufogianni, E., Kakara, S., Charvalas, G., & Kollimenakis, A. (2021). Ecological value, cultivation, and utilization of important medicinal plants (sage, oregano, and sideritis) in Greece. In H. M. Ekiert, K. G. Ramawat, & J. Arora (Eds.), *Medicinal Plants. Sustainable Development and Biodiversity* (Vol. 28). Springer.
43. Tebbi, S. O., Trapali, M., & Letsiou, S. (2023). Exploring the anti-diabetic, antioxidant, and anti-microbial properties of *Clematis flammula* L. leaves and *Pistacia lentiscus* L. fruits using choline chloride-based deep eutectic solvent. *Waste and Biomass Valorization*. https://doi.org/10.1007/s12649-023-02360-9
44. Trapali, M. (2022). Antioxidant activity in patients with type II diabetes. *Review of Clinical Pharmacology and Pharmacokinetics*, 36(1), 6.
45. Trapali, M., & Papadopoulou, A. (2023). Genetic polymorphisms possibly implicated in diabetes mellitus. *Review of Clinical Pharmacology and Pharmacokinetics*, 37(1), 1-6.
46. Trapali, M. (2021). Oxidic degradation of lipids in patients with type II diabetes. *Review of Clinical Pharmacology and Pharmacokinetics*, 35(2), 4.
47. Uritu, C. M., Mihai, C. T., Stanciu, G.-D., Dodi, G., Alexa-Stratulat, T., Luca, A., Leon-Constantin, M.-M., Stefanescu, R., Bild, V., Melnic, S., & Tamba, B. I. (2018). Medicinal plants of the family Lamiaceae in pain therapy: A review. *Pain Research and Management*, 2018, Article 7801543. https://doi.org/10.1155/2018/7801543
48. Yu, H., Zhang, P., Liu, H., Sun, X., Liang, J., Sun, L., & Chen, Y. (2021). Hypoglycemic activity of *Origanum vulgare* L. and its main chemical constituents identified with HPLC-ESI-QTOF-MS. *Food & Function*, 12(6), 2580-2590. https://doi.org/10.1039/d0fo03166f
49. Wahab, M., Bhatti, A., & John, P. (2022). Evaluation of antidiabetic activity of biogenic silver nanoparticles using *Thymus serpyllum* on streptozotocin-induced diabetic BALB/c mice. *Polymers (Basel)*, 14(15), 3138. https://doi.org/10.3390/polym14153138
Published
2024-10-31
How to Cite
Lagouri, V., Tebbi, S. O., Caseiro, A., & Trapali, M. (2024). Lamiaceae Family Plants as Natural Solutions for Inflammation and Blood Sugar Management. European Scientific Journal, ESJ, 20(30), 34. https://doi.org/10.19044/esj.2024.v20n30p34
Section
ESJ Natural/Life/Medical Sciences