Déterminants de l’adoption des TIC par les agriculteurs de la région du Centre au Burkina Faso
Abstract
Cette recherche analyse les déterminants de l'adoption des technologies de l'information et de la communication (TIC) par les agriculteurs. Les données ont été recueillies auprès de 420 agriculteurs de la région du Centre au Burkina Faso, sélectionnés par échantillonnage aléatoire simple. L'analyse des données repose sur des statistiques descriptives et un modèle Probit multivarié. Les résultats révèlent que des facteurs comme le sexe, le niveau d’instruction, l’âge, la distance au marché, le revenu non agricole et l’appartenance à une organisation de producteurs influencent de manière différenciée l’adoption de chaque type spécifique de TIC étudiées. Ces résultats mettent en évidence la nécessité de développer des politiques TIC qui soient spécifiquement adaptées aux profils des agriculteurs, en tenant compte de leurs caractéristiques socio-démographiques, économiques et institutionnelles. Il est essentiel d'intégrer des stratégies tenant compte du genre et de l'âge, ainsi que d'offrir des subventions financières pour faciliter l'adoption. Étant donné que chaque technologie requiert une approche distincte, il est primordial de concevoir des solutions adaptées aux contextes locaux et de renforcer les organisations de producteurs afin de sensibiliser et de former les agriculteurs de manière efficace.
This research explores the determinants of farmers' adoption of information and communication technologies (ICTs). Data were collected from 420 farmers in the Center region of Burkina Faso, selected by simple random sampling. Data analysis was based on descriptive statistics and a multivariate Probit model.The results reveal that factors such as gender, level of education, age, distance from the market, off-farm income and membership of a producer organization differentially influence the adoption of each specific type of ICT studied. These results highlight the need to develop ICT policies that are specifically tailored to farmers' profiles, taking into account their socio-demographic, economic and institutional characteristics. Gender- and age-sensitive strategies are essential, as are financial subsidies to facilitate adoption. As each technology requires a distinct approach, it is essential to design solutions adapted to local contexts, and to strengthen producer organizations in order to raise awareness and train farmers effectively.
Downloads
Metrics
PlumX Statistics
References
2. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211.
3. Aker, J. C. (2010). Information from markets near and far : Mobile phones and agricultural markets in Niger. American Economic Journal : Applied Economics, 2(3), 46-59.
4. Aker, J. C. (2011). Dial “A” for agriculture : Using information and communication technologies for agricultural extension in developing countries. Agricultural Economics, 42(6), 631-647.
5. Aker, J. C., & Mbiti, I. M. (2010). Mobile phones and economic development in Africa. Journal of Economic Perspectives, 24(3), 207–232. https://doi.org/10.1257/jep.24.3.207
6. Aminou, A. F., Houensou, A. D., & Hekponhoue, S. (2018). Effect of mobile phone ownership on agricultural productivity in Benin : The case of maize farmers. Journal of Economics and Development Studies, 6(4), 77-88.
7. Awuor, F., & Rambim, D. (2022). Adoption of ICT-in-agriculture innovations by smallholder farmers in Kenya. Technology and Investment, 13, 92-103.
8. Birba, O., & Diagne, A. (2012). Determinants of adoption of Internet in Africa : Case of 17 sub-Saharan countries. Structural Change and Economic Dynamics, 23, 463-472.
9. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340.
10. Diendere, A. D. (2019). Determinants of the awareness and use of electronic information systems: Evidence from farmers in Burkina Faso. Review of Agricultural and Applied Economics Acta Oeconomica et Informatica, 3-13.
11. Ebele, S. N., Abigail, O., & Stephen, K. D. (2019). Socioeconomic determinants of information and communication technology adoption among rice farmers in Ebonyi State, Nigeria. Nigerian Journal of Economic and Social Studies, 61(3).
12. Fawole, B. E., Garba, H. S., & Ebenehi, O. (2024). Influencing the use of information and communication technologies among maize farmers in Zaria Local Government Area of Kaduna State, Nigeria. Nigerian Journal of Agriculture and Agricultural Technology (NJAAT), 4(2), 68. https://www.njaat.atbu.edu.ng
13. Fletschner, D., & Mesbah, D. (2011). Gender disparity in access to information : Do spouses share what they know? World Development, 39(8), 1422-1433.
14. Greene, W. H. (2012). Econometric Analysis. Prentice Hall International.
15. Idu, E. E., Ola, I. A., Sennuga, S. O., Bamidele, J., Alabuja, F. O., Osho-Lagunju, B., Preyor, T. J., & Omoles, A. O. (2023). Assessment of factors influencing the use of information and communication technologies (ICT) among small-scale rice farmers in Kuje Area Council of FCT, Abuja. International Journal of Research and Innovation in Social Science (IJRISS), 7(6), 1025. https://doi.org/10.47772/IJRISS
16. INSD. (2022). Cinquième recensement général de la population et de l’habitation : Monographie de la région du Centre.
17. Jabir, A. (2012). Factors affecting the adoption of information and communication technologies (ICTs) for farming decisions. Journal of Agricultural & Food Information, 13(1), 78-96. https://doi.org/10.1080/10496505.2012.636980
18. Kang, S., Sidhoum, A. A., Frick, F., Sauer, J., & Zheng, S. (2023). The impact of information and communication technology on the technical efficiency of smallholder vegetable farms in Shandong of China. Q Open, 3(1), 1–21. https://doi.org/10.1093/qopen/qoad017
19. Mittal, S., Gandhi, S., & Tripathi, G. (2010). Socio-Economic Impact of Mobile Phones on Indian Agriculture (Working Paper No. 246). Indian Council for Research on International Economic Relations (ICRIER).
20. Mittal, S., & Mahar, M. (2015). Socio-economic factors affecting adoption of modern information and communication technology by farmers in India: Analysis using multivariate probit model. Journal of Agricultural Education and Extension, 21(1), 1–14. https://doi.org/10.1080/1389224X.2014.971824
21. Muto, M., & Yamano, T. (2009). The impact of mobile phone coverage expansion on market participation : Panel data evidence from Uganda. World Development, 37(12), 1887-1896. https://doi.org/10.1016/j.worlddev.2009.05.004
22. Mtega, W. P., & Msungu, A. C. (2013). Using information and communication technologies for enhancing the accessibility of agricultural information for improved agricultural production in Tanzania. The Electronic Journal of Information Systems in Developing Countries. http://www.ejisdc.org
23. Mtega, W. P. (2018). The usage of radio and television as agricultural knowledge sources : The case of farmers in Morogoro region of Tanzania. International Journal of Education and Development using Information and Communication Technology (IJEDICT), 14(3), 252-266.
24. Nakasone, E., Torero, M., & Minten, B. (2014). The power of information : The ICT revolution in agricultural development. Annual Review of Resource Economics, 6, 533-550. https://doi.org/10.1146/annurev-resource-100913-012714
25. Nzonzo, D., & Mogambi, H. (2016). An analysis of communication and information communication technologies adoption in irrigated rice production in Kenya. International Journal of Education and Research, 4(12). http://www.ijern.com
26. Oke, F. O., Olorunsogo, G. O., & Akerele, D. (2021). Impact of information communication technology (ICT) and mass media usage on technical efficiency of fish farming in Ogun State, Nigeria. Journal of Agribusiness and Rural Development, 2(60), 143–150. https://doi.org/10.17306/J.JARD.2021
27. Okello, J. J., Kirui, K. O., Njiraini, G. W., & Gitonga, M. Z. (2012). Drivers of use of information and communication technologies by farm households: The case of smallholder farmers in Kenya. Journal of Agricultural Science, 4(11), 112-124.
28. Ouya, F. O., Murage, A. W., Pittchar, J. O., Chidawanyika, F., Pickett, J. A., & Khan, Z. R. (2023). Impacts des technologies push-pull résilientes au changement climatique sur les revenus des agriculteurs dans certains comtés du Kenya et de Tanzanie : approche de correspondance par score de propension. Agriculture & Sécurité Alimentaire, 12(15). https://doi.org/10.1186/s40066-023-04184
29. Rogers, E. M. (2003). Diffusion of Innovations (5th ed.). New York : Free Press.
30. Sennuga, S. O., Conway, J. S., & Sennuga, M. A. (2020). Impact of information and communication technologies (ICTs) on agricultural productivity among smallholder farmers : Evidence from sub-Saharan African communities. International Journal of Agricultural Extension and Rural Development Studies, 7(1), 27-43.
31. Sife, A. S., Kiondo, E., & Lyimo-Macha, J. G. (2010). Contribution of mobile phones to rural livelihoods and poverty reduction in Morogoro Region, Tanzania. Electronic Journal of Information Systems in Developing Countries, 42(1), 1–15. https://doi.org/10.1002/j.1681-4835.2010.tb00297.x
32. Syiem, R., & Raj, S. (2015). Access and usage of ICTs for agriculture and rural development by the tribal farmers in Meghalaya State of North-East India. Journal of Agricultural Informatics, 6(3), 24–41. https://doi.org/10.17700/jai.2015.6.3.190
33. Teno, G., Lehrer, K., & Kone, A. (2018). Les facteurs de l’adoption des nouvelles technologies en agriculture en Afrique Sub-saharienne : Une revue de la littérature. African Journal of Agricultural and Resource Economics, 13(2), 140–151.
34. Tsegaye M. H., & Almas H. (2023) Impacts des technologies agricoles améliorées sur la sécurité alimentaire et la nutrition infantile en milieu rural en Éthiopie, Cogent Food & Agriculture, 9:2, 2276565, DOI: 10.1080/23311932.2023.2276565
35. Wawire, A. W., Wangia, S. M., & Okello, J. J. (2017). Déterminants de l'utilisation des technologies de l'information et de la communication dans l'agriculture : Le cas du Kenya Agricultural Commodity Exchange dans le comté de Bungoma, Kenya. Journal of Agricultural Science, 9(3), 1916–9752. https://doi.org/10.5539/jas.v9n3p10
36. Yabi, A. J., Bachabi, X., Labiyi, A. I., Ode, C. A., & Ayena, R. L. (2016). Déterminants socio-économiques de l’adoption des pratiques culturales de gestion de la fertilité des sols utilisées dans la commune de Ouaké au Nord-Ouest du Bénin. International Journal of Biological and Chemical Sciences, 10(2), 779–792. http://indexmedicus.afro.who.int
37. Yaseen, M., Xu, S., Yu, W., Luqman, M., Hassan, S., & Ameen, M. (2016). Factors inhibiting ICTs use among farmers : Comparative analysis from Pakistan and China. Open Journal of Social Sciences, 4, 287–294. https://doi.org/10.4236/jss.2016.45030
Copyright (c) 2024 Ibrahim Sana, Achille Augustin Diendere, Afouda Jacob Yabi
This work is licensed under a Creative Commons Attribution 4.0 International License.