Suivi des Parametres Physico-Chimiques des Eaux Souterraines du Bassin de l’alima, sous bassin du Fleuve Congo : Campagnes de Grande Saison Seche 2021 et 2022 dans les Districts d’Oyo, Tchikapika et Boundji, Republique du Congo

  • Lebela Mouakoumbat Noida Janesia Doctorante, École nationale polytechnique, Université Marien Ngouabi, Brazzaville, Congo
  • Chesther Gatsé Ebotehouna Docteur, Ecole Normale Supérieure, Université Marien Ngouabi, Brazzaville, Congo
  • Urbain Gampio Mbilou Professeur Titulaire CAMES, Unité de Recherche d’hydrologie et hydrogéologie, Département de géologie, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Congo
Keywords: Eaux souterraines ; physico-chimiques, qualité d’eau, saison sèche, bassin versant de l’Alima

Abstract

Cette étude a pour objectif de suivre l’évolution des paramètres hydrogéochimiques des eaux souterraines des districts d'Oyo, Tchikapika et Boundji, dans le bassin versant de l’Alima, afin de déterminer leur qualité pour la consommation et l'irrigation pendant les saisons sèches de 2021 et 2022. L'échantillonnage a inclus 26 ouvrages en 2021 et 34 en 2022, répartis entre sources aménagées, puits de captage et forages. Les échantillons ont été prélevés, stockés et analysés au laboratoire de La Congolaise des Eaux (LCDE). Les paramètres physiques (pH, température, conductivité, TDS) et chimiques (cations et anions) ont été mesurés in situ et en laboratoire. Les résultats montrent que les eaux respectent les normes OMS, avec une prédominance de Ca²⁺, Na⁺, HCO₃⁻ et Cl⁻, et deux faciès dominants, bicarbonaté calcique et magnésien en 2021, et chloruré, sulfaté calcique et magnésien en 2022. Les eaux souterraines d’Oyo, Tchikapika et Boundji respectent les normes de l’OMS, mais présentent des spécificités chimiques qui nécessitent une surveillance continue. L’acidité persistante, la faible minéralisation, et la corrosion des infrastructures sont des indicateurs de risques sanitaires potentiels, bien que la qualité chimique globale soit satisfaisante. Les éléments tels que le Ca²⁺, Na⁺, et HCO₃⁻ dominent la composition chimique des eaux, avec une influence notable des précipitations et de l’altération des silicates. Selon les critères de Wilcox, les eaux sont excellentes à bonnes pour l'irrigation. Cependant, les préoccupations concernant l’acidité de ces eaux et les risques microbiologiques auxquelles elles sont exposées d’où, la nécessité d’un suivi microbiologique. Les résultats peuvent orienter les politiques de gestion de l’eau, particulièrement pour les régions où l’acidité et la corrosion peuvent affecter la santé publique et les infrastructures. Un suivi régulier et des interventions ciblées sont nécessaires pour garantir la potabilité de l'eau et la santé des habitants.

 

This study aims to monitor the evolution of the hydrogeochemical parameters of groundwater in the sub-prefectures of Oyo, Tchikapika and Boundji, in the Alima watershed, in order to determine their quality for consumption and irrigation during the dry seasons of 2021 and 2022. Sampling included 26 structures in 2021 and 34 in 2022, divided between developed sources, catchment wells and boreholes. The samples were collected, stored and analyzed at the laboratory of La Congolaise des Eaux (LCDE). The physical (pH, temperature, conductivity, TDS) and chemical (cations and anions) parameters were measured in situ and in the laboratory. The results show that the waters meet WHO standards, with a predominance of Ca²⁺, Na⁺, HCO₃⁻ and Cl⁻, and two dominant facies, calcium bicarbonate and magnesium in 2021, and chloride, calcium sulfate and magnesium in 2022. The groundwaters of Oyo, Tchikapika and Boundji meet WHO standards, but have chemical specificities that require continuous monitoring. Persistent acidity, low mineralization, and corrosion of infrastructure are indicators of potential health risks, although the overall chemical quality is satisfactory. Elements such as Ca²⁺, Na⁺, and HCO₃⁻ dominate the chemical composition of the waters, with a notable influence of precipitation and silicate weathering. According to the Wilcox criteria, the waters are excellent to good for irrigation. However, concerns about the acidity of these waters and the microbiological risks to which they are exposed, hence the need for microbiological monitoring. The results can guide water management policies, particularly for regions where acidity and corrosion can affect public health and infrastructure. Regular monitoring and targeted interventions are necessary to ensure the potability of water and the health of residents.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

1. Adams, S., Titus, R., Pietersen, K., Tredoux G., & Harris, C. (2001). Hydrochemical characteristics of aquifers near Sutherland in the Western Karoo, South Africa: Journal of hydrology, Vol. 241, Issues 1-2, pp. 91-103.
2. Akil, A., Hassan, T., Lahcen, B., & Abderrahim, L. (2014). Etude de la qualité physico-chimique et contamination métallique des eaux de surface du bassin versant de Guigou, Maroc: European Scientific Journal, Vol. 10, Issues 23.
3. Ambarref, M., Saadia, A., Bernoussi, A., & Haddouchi, B. (2007). Mapping vulnerability to groundwater pollution: application to the Gharb plain (Morocco): Rev Sci Eau, Vol. 20, Issues 2, pp. 185-199.
4. Ansari, J. A., Umar, R. (2019). Evaluation of hydrogeochemical characteristics and groundwater quality in the quaternary aquifers of Unnao District, Uttar Pradesh, India: HydroResearch, Vol. 1, pp. 36-47.
5. Appelo, C., & Postma D. (1996). Geochemistry, groundwater and pollution (3 rd corrected print): Balkema, Rotterdam, Vol. 536.
6. Bocquier, G (1960). Note concernant les travaux pédologiques dans la cuvette congolaise, Republique du Congo.
7. Bouteldjaoui, F., & Taupin JD. (2023). Assessment of some bottled natural mineral waters and spring waters in Algeria using multivariate statistical analysis, hydrogeochemical approaches and water quality index (WQI): International Journal of Environmental Analytical Chemistry, pp. 1-25.
8. BRGM (Bureau de Recherches Geologiques et Minieres) (1982). Notice explicative de la carte de planification des ressources en eau du Gabon et du Congo, Serie hydrogéologie de Comité Interafricain d’Etudes Hydrauliques (CIEH), 116pp, Ouagadougou. Burkinafasso.
9. Brindha, K., Pavelic, P., Sotoukee, T., Douangsavanh, S., & Elango L. (2017). Geochemical characteristics and groundwater quality in the Vientiane plain, Laos: Exposure and Health, Vol. 9, Issues. 2, pp. 89-104.
10. Chadha, D (1999). A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data: Hydrogeology journal, v. 7, p. 431-439.
11. Chen, W., Zhang, Y., Shi, W., Cui, Y., Zhang, Q., Shi, Y., & Liang, Z. (2021). Analysis of Hydrogeochemical Characteristics and Origins of Chromium Contamination in Groundwater at a Site in Xinxiang City, Henan Province: Applied Sciences, Vol. 11, Issues. 24, pp. 11683.
12. Ganiyu, S., Badmus, B., Olurin, O., & Ojekunle Z. (2018). Evaluation of seasonal variation of water quality using multivariate statistical analysis and irrigation parameter indices in Ajakanga area, Ibadan, Nigeria: Applied water science, Vol. 8, pp. 1-15.
13. Gibbs, RJ (1970). Mechanisms controlling world water chemistry: Science, Vol. 170, Issues. 3962, pp. 1088-1090.
14. Goula, BTA., Savane, I., Konan, B., Fadika V., & Kouadio GB. (2006). Impact de la variabilité climatique sur les ressources hydriques des bassins de N’Zo et N’Zi en Côte d’Ivoire (Afrique tropicale humide): VertigO-la revue électronique en sciences de l'environnement, Vol. 7, Issues. 1.
15. Husain, MS., Umar, R., & Ahmad S. (2020). A comparative study of springs and groundwater chemistry of Beas and Parbati valley, Kullu District, Himachal Pradesh, India: HydroResearch, Vol. 3, pp. 32-47.
16. INS (Institut National de la Statistique), (2020). Annuaire statistique du departement de la Cuvette 2018.
17. Itoua, TR., Mahoungou, GI., Maloba-Makanga, JD., Maniaka, FW., Samba-Kimbata, MJ. (2017). Evolution Decenale Des Regimes Pluviometriques Au Nord-Congo (République du Congo) de 1932 à 2011. Revues-ufhb-ci.org.
18. Jain, C., Bandyopadhyay, A., & Bhadra A. (2010). Assessment of ground water quality for drinking purpose, District Nainital, Uttarakhand, India: Environmental monitoring and assessment, Vol. 166, pp. 663-676.
19. Khan, R., & Jhariya D. (2018). Hydrogeochemistry and groundwater quality assessment for drinking and irrigation purpose of Raipur City, Chhattisgarh: Journal of the Geological Society of India, Vol. 91, pp. 475-482.
20. Krishna Kumar, S., Logeshkumaran, A., Magesh, N., Godson, PS., & Chandrasekar N. (2015). Hydro-geochemistry and application of water quality index (WQI) for groundwater quality assessment, Anna Nagar, part of Chennai City, Tamil Nadu, India: Applied Water Science, Vol. 5, pp. 335-343.
21. Kumar, L., Deitch, MJ., Tunio, IA., Kumar A., Memon SA., Williams L., Tagar U., Kumari R., & Basheer S. (2022). Assessment of physicochemical parameters in groundwater quality of desert area (Tharparkar) of Pakistan: Case Studies in Chemical and Environmental Engineering, Vol. 6, pp. 100232.
22. Kumar, PS (2014). Evolution of groundwater chemistry in and around Vaniyambadi industrial area: differentiating the natural and anthropogenic sources of contamination: Geochemistry, Vol. 74, Issues 4, pp. 641-651.
23. Laraque, A., & Olivry, J. (1998). Two hydrological systems close but opposite of the Congo-Zaire: the Congolese basin and Teke plateaux, in Proceedings International Conference on tropical climatology, meteorology and hydrology in memoriam Franz Bultot, Bruxelles (Belgium), pp. 22-24 May 1996, 1998, Royal Meteorological Institute of Belgium; Royal Academy of Overseas Sciences.
24. Li, P., Wu, J., Tian, R., He, S., He X., Xue, C., & Zhang K. (2018). Geochemistry, hydraulic connectivity and quality appraisal of multilayered groundwater in the Hongdunzi Coal Mine, Northwest China: Mine Water and the Environment, Vol. 37, Issues 2, pp. 222-237.
25. Lyu, M., Pang, Z., Yin, L., Zhang, J., Huang, T., Yang, S., Li Z., Wang, X., & Gulbostan, T. (2019). The control of groundwater flow systems and geochemical processes on groundwater chemistry: a case study in Wushenzhao Basin, NW China: Water, Vol. 11, Issues. 4, pp. 790.
26. Makhoukh, M., Sbaa, M., Berrahou, A., & Van Clooster, M. (2011). Contribution a l’étude physico-chimique des eaux superficielles de l’Oued Moulouya (Maroc oriental): LARHYSS Journal P-ISSN 1112-3680/E-ISSN. , Issues 9, pp. 2521-9782.
27. Mgbenu, CN., & Egbueri J.C. (2019). The hydrogeochemical signatures, quality indices and health risk assessment of water resources in Umunya district, southeast Nigeria: Applied water science, Vol. 9, Issues 1, p. 22.
28. Mondal, N., Singh, V., Saxena, V., & Singh, V. (2011). Assessment of seawater impact using major hydrochemical ions: a case study from Sadras, Tamilnadu, India: Environmental monitoring and assessment, Vol. 177, pp. 315-335.
29. Murhula, EM., Kutangila, SM., Birhenjira, EM., & Muyisa, SK. (2019). Hydrogéochimie et susceptibilité à la contamination des eaux souterraines dans le secteur de Panzi, ville de Bukavu, RD Congo: Geo-Eco-Trop, Vol. 43, Issues 1, pp. 197-209.
30. Ojekunle, ZO., Adeyemi, AA., Taiwo AM., Ganiyu, SA., & Balogun MA., (2020). Assessment of physicochemical characteristics of groundwater within selected industrial areas in Ogun State, Nigeria: Environmental pollutants and bioavailability, Vol. 32, Issues 1, pp. 100-113.
31. OMS, World Health Organization (W.H.O), (2019). Guidelines for drinking-water quality, Fourth edition. 2011. ISBN 978 92 4 154815 1 [cited 2019 Nov 24]. Available from: http://www.who.int.
32. Ravikumar, P., Somashekar, R., & Angami, M. (2011). Hydrochemistry and evaluation of groundwater suitability for irrigation and drinking purposes in the Markandeya River basin, Belgaum District, Karnataka State, India: Environmental monitoring and assessment, Vol. 173, pp. 459-487.
33. Roy, A., Keesari, T., Mohokar, H., Pant, D., Sinha, UK., & Mendhekar G. (2020). Geochemical evolution of groundwater in hard-rock aquifers of South India using statistical and modelling techniques: Hydrological Sciences Journal, Vol. 65, Issues 6, pp. 951-968.
34. Sajil Kumar, P., Delson, PD., & James, E. (2014). Evaluation of groundwater chemistry in Vaniyambadi industrial area with special reference on irrigation utility: National Academy Science Letters, Vol. 37, pp. 493-502.
35. Sajil Kumar, P., Mohanan, AA., & Ekanthalu, VS. (2020). Hydrogeochemical analysis of Groundwater in Thanjavur district, Tamil Nadu; Influences of Geological settings and land use pattern: Geology, Ecology, and Landscapes, Vol. 4, Issues 4, pp. 306-317.
36. Sandao, I., Babaye, MSA., Ousmane, B., & Michelot, JL. (2018). Apports des isotopes naturels de l’eau ā la caractérisation des mécanismes de recharge des aquifčres du bassin de la Korama, Région de Zinder, Niger: International Journal of Biological and Chemical Sciences, Vol. 12, Issues 4, pp. 1931-1954.
37. Sawyer, C., & Mccarthy, P. (1967). Chemical and sanitary engineering, McGraw-Hill, New York.
38. Selvakumar S., Chandrasekar N., Kumar G. (2017). Hydrogeochemical characteristics and groundwater contamination in the rapid urban development areas of Coimbatore, India: Water Resources and Industry, Vol. 17, pp. 26-33.
39. Sethy, SN., Syed, TH., Kumar, A., & Sinha, D. (2016). Hydrogeochemical characterization and quality assessment of groundwater in parts of Southern Gangetic Plain: Environmental Earth Sciences, Vol. 75, pp. 1-15.
40. Singh, A., Patel, AK., Ramanathan, A., & Kumar M. (2020). Climatic influences on arsenic health risk in the metamorphic precambrian deposits of Sri Lanka: a re-analysis-based critical review: Journal of Climate Change, Vol. 6, Issues 1, pp. 15-24.
41. Souleymane, IMS., Babaye, MSA., Alhassane, I., & Boureima, O. (2020). Caractérisations hydrogéochimiques et qualités des eaux de la nappe phréatique du haut bassin versant de la Korama, commune de Droum/région de Zinder (Niger/Afrique de l’Ouest): International Journal of Biological and Chemical Sciences, Vol. 14, Issues 5, pp. 1862-1877.
42. U.S Salinity Laboratory Staff. (1954). Diagnosis and improvement of saline and alkali soils. US Department of Agriculture.
43. Subramani, T., Elango, L., & Damodarasamy, S. (2005). Groundwater quality and its suitability for drinking and agricultural use in Chithar River Basin, Tamil Nadu, India: Environmental Geology, Vol. 47, pp. 1099-1110.
44. Thierrin, J., Steffen, P., Cornaz, S., Vuataz, F.-D., Balderer, W., & Looser, M. (2003). Echantillonnage des eaux souterraines: Guide pratique: Publications de l’Office fédéral de l’environnement, des forêts et du paysage (OFEFP), pp. 1-83.
45. Vasanthavigar, M., Srinivasamoorthy, K., & Prasanna, M. (2012). Evaluation of groundwater suitability for domestic, irrigational, and industrial purposes: a case study from Thirumanimuttar river basin, Tamilnadu, India: Environmental Monitoring and Assessment, Vol. 184, pp. 405-420.
46. Wilcox, L., Blair, GY., & Bower, C. (1954). Effect of bicarbonate on suitability of water for irrigation: Soil Science, Vol. 77, Issues 4, pp. 259-266.
47. Wilcox, LV. (1948). The quality of water for irrigation use.
Published
2025-05-19
How to Cite
Noida Janesia, L. M., Gatsé Ebotehouna, C., & Gampio Mbilou, U. (2025). Suivi des Parametres Physico-Chimiques des Eaux Souterraines du Bassin de l’alima, sous bassin du Fleuve Congo : Campagnes de Grande Saison Seche 2021 et 2022 dans les Districts d’Oyo, Tchikapika et Boundji, Republique du Congo. European Scientific Journal, ESJ, 41, 363. Retrieved from https://eujournal.org/index.php/esj/article/view/19515
Section
ESI Preprints