Streamflow forecasting of Astore River with Seasonal Autoregressive Integrated Moving Average model

Rana Muhammad Adnan, Xiaohui Yuan, Ozgur Kisi, Yanbin Yuan


Simulation of streamflow is one of important factors in water utilization. In this paper, a linear statistical model i.e. Seasonal Autoregressive Integrated Moving Average model (SARIMA) is applied for modeling streamflow data of Astore River (1974 – 2010). On the basis of minimum Akaike Information Criteria Corrected (AICc) and Bayesian Information Criteria (BIC) values, the best model from different model structures has been identified. For testing period (2004-2010), the prediction accuracy of selected SARIMA model in comparison of auto regressive (AR) is evaluated on basis of root mean square error (RMSE), the mean absolute error (MAE) and coefficient of determination (R2 ). The results show that SARIMA performed better than AR model and can be used in streamflow forecasting at the study site.

Full Text:


Copyright (c) 2017 European Scientific Journal, ESJ

European Scientific Journal (ESJ)


ISSN: 1857-7881 (Print)
ISSN: 1857-7431 (Online)



To make sure that you can receive messages from us, please add the '' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.

Publisher: European Scientific Institute, ESI.
ESI cooperates with Universities and Academic Centres on 5 continents.