Impact of Humoral Immune Response and Absorption Effect on Dynamics of Dengue Virus

S.D. Perera, S.S.N. Perera


Dengue infection represents a global threat causing 50-100 million infections per year and placing half of the world’s population at risk. Even though how infection is controlled and cured rather remains a mystery, antibodies are thought to play a major role in clearing the virus. In this paper, we study the dynamics of dengue virus with humoral immune response and absorption effect. The proposed model incorporates a time delay in production of antibodies. The basic reproduction number R0 is computed and a detailed stability analysis is done. It was found that the model has 3 steady states, namely, infection free equilibrium, no immune equilibrium and the endemic equilibrium. Conditions for R0 were developed for the local stability of these 3 equilibrium states. The global stability was studied using appropriate Lyapunov function and LaSalle’s invariance principle. We then established a condition for which the endemic equilibrium point is globally asymptotically stable. Also it was observed that the virus count goes to negligible levels within 7-14 days after the onset of symptoms.

Full Text:


Copyright (c) 2017 European Scientific Journal, ESJ

European Scientific Journal (ESJ)


ISSN: 1857-7881 (Print)
ISSN: 1857-7431 (Online)



To make sure that you can receive messages from us, please add the '' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.

Publisher: European Scientific Institute, ESI.
ESI cooperates with Universities and Academic Centres on 5 continents.