Evaluación del posicionamiento preciso a través de los receptores GPS LEA-6T, NEO-M8T y ZED-F9P de bajo costo
Abstract
Se comparó el posicionamiento obtenido en dos casos de estudios dependientes de las distancias (~31 y ~4.9 Km) a través del método estático mediante el uso de receptores de bajo costo de simple (LEA-6T y NEO-M8T) y doble frecuencia (ZED-F9P); tomando como referencia un receptor de orden geodésico Geomax Zenith 25. Asimismo, el posicionamiento fue evaluado con a la normativa vigente en México para el Circulo de Error Probable (CEP) y Exactitud Posicional Vertical (EPV) con una incertidumbre del 95%. Se
encuentran discrepancias entre coordenadas para un mismo punto en el sistema ENU, valores mínimos de ~ 2 mm y ~ 10 mm, para una distancia ~31 y ~4.9 Km, respectivamente, obteniendo el mejor resultado con el receptor de una frecuencia LEA-M8T para la distancia de ~31 km; para el caso ~4.9 km se presenta con el receptor ZED-F9P en conjunto con una antena de orden Geodésico. Por otro lado, los resultados muestran un grado de cumplimiento en el posicionamiento de los receptores de bajo costo favorable donde; se obtienen valores de 8 mm de variación máxima para CEP; para EPV al 95% de confiabilidad, 1 cm de discrepancia. Presentando los mejores resultados los receptores LEA-6T y NEO-M8T, caso ~31 km, en cuanto a CEP y EPV.
A comparative study between the positioning obtained in two case studies depending on distances (~31 and ~4.9 km) was carried out through the static method of survey using the low-cost receivers of single (LEA-6T and NEO-M8T) and double frequency (ZED-F9P). The reference was taken as Geomax Zenith 25 geodetic order receiver. The positioning was evaluated with the current regulations in Mexico for the Circle of Probable Error (CEP) and Vertical Positional Accuracy (EPV) with an uncertainty of 95%. The discrepancies between coordinates for the same point in the ENU system were found to be the minimum values of ~ 2 mm and ~ 10 mm for a distance of ~31 and ~4.9 Km, respectively. The best results were obtained with the NEO-M8T single frequency receiver for the distance of ~31 km and for the distance of ~4.9 km, it is presented with the ZED-F9P receiver in conjunction with a geodetic antenna. Whereas on the other hand, the results show a degree of compliance in the positioning of low-cost receivers wherein the variation values of a maximum of 8 mm are obtained for CEP and for EPV 1 cm discrepancy was observed at 95% reliability. The LEA-6T and NEO-M8T receivers presented the best results for the case of ~31 km, in terms of CEP and EPV.
Downloads
Metrics
PlumX Statistics
References
https://doi.org/10.1080/19475705.2014.889046
2. Estey, L. H., & Meertens, C. M. (1999). TEQC: the multi-purpose toolkit for GPS/GLONASS data. GPS Solutions, 3(1), 42–49.
3. Estey, L., & Wier, S. (2014). Teqc Tutorial: basics of Teqc use and Teqc products (Issue June).
4. Ferhat, G., Malet, J.-P., & Ulrich, P. (2015). Evaluation of different processing strategies of Continuous GPS (CGPS) observations for landslide monitoring. EGU General Assembly Conference Abstracts, 17, 10582.
5. García-Armenteros, J. A. (2020). Monitorización Y Control De Calidad De Las Estaciones De La Red Cgps Topo-Iberia-UJA. European Scientific Journal, 16(24).
https://doi.org/10.19044/esj.2020.v16n24p1
6. García Marín, A., Rosique Campoy, M., & Torres Picazo, M. (2012). Historia de las Matemáticas. Introducción histórica a La Geodesia. El Pensamiento Matemático, 1–63.
7. Garrido-Carretero, M. S., de Lacy-Pérez de los Cobos, M. C., Borque-Arancón, M. J., Ruiz-Armenteros, A. M., Moreno-Guerrero, R., & Gil-Cruz, A. J. (2019). Low-cost GNSS receiver in RTK positioning under the standard ISO-17123-8: A feasible option in geomatics. Measurement: Journal of the International Measurement Confederation, 137, 168–178.
https://doi.org/10.1016/j.measurement.2019.01.045
8. Gill, M., Bisnath, S., Aggrey, J., & Seepersad, G. (2017). Precise Point Positioning (PPP) using low-cost and ultra-low-cost GNSS receivers. 30th International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS 2017, 1(May), 226–236. https://doi.org/10.33012/2017.15123
9. Hamza, V., Stopar, B., & Sterle, O. (2021a). Receivers and Antennas.
10. Hamza, V., Stopar, B., & Sterle, O. (2021b). Testing the Performance of Multi-Frequency Low-Cost GNSS Receivers and Antennas. Sensor, 21. https://doi.org/doi.org/10.3390/s21062029
11. Hernández-Andrade, D., Romero-Andrade, R., Cabanillas-Zavala, J. L., Ávila-Cruz, M., Trejo-Soto, M. E., & Vega-Ayala, A. (2020). Análisis de calidad de las observaciones GPS en estaciones de operación continua de libre acceso en México. European Scientific Journal, 16(33). https://doi.org/10.19044/esj.2020.v16n33p332
12. Hernández-Andrade, D., Romero-Andrade, R., Sharma, G., Trejo-Soto, M. E., & Cabanillas-Zavala, J. L. (2022). Quality assessment of Continuous Operating Reference Stations (CORS) - GPS stations in Mexico. Geodesy and Geodynamics, 13.
https://doi.org/10.1016/j.geog.2021.12.003
13. Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2008). GNSS Global Navigation Satellite System GPS, GLONASS, Galileo and more. Springer Wien New York.
14. IGS. (2015). IGS Site Guidelines. Organization, July, 1–9.
15. INEGI. (2010). Norma técnica de Estándares de Exactitud Posicional. 1–12.
16. INEGI. (2016). Procesamiento de datos GPS considerando deformaciones del Marco Geodésico.
17. Manzini, N., Orcesi, A., Thom, C., Brossault, M. A., Botton, S., Ortiz, M., & Dumoulin, J. (2020). Performance analysis of low-cost GNSS stations for structural health monitoring of civil engineering structures. Structure and Infrastructure Engineering, 0(0), 1–17.
https://doi.org/10.1080/15732479.2020.1849320
18. Marquez-Azua, B., & DeMets, C. (2009). Deformation of Mexico from continuous GPS from 1993 to 2008. Geochemistry, Geophysics, Geosystems, 10(2), 1–16. https://doi.org/10.1029/2008GC002278
19. Paziewski, J., Fortunato, M., Mazzoni, A., & Odolinski, R. (2021). An analysis of multi-GNSS observations tracked by recent Android smartphones and smartphone-only relative positioning results. Measurement: Journal of the International Measurement Confederation, 175(February), 109162.
https://doi.org/10.1016/j.measurement.2021.109162
20. Poluzzi, L., Tavasci, L., Corsini, F., Barbarella, M., & Gandolfi, S. (2019). Low-cost GNSS sensors for monitoring applications. Applied Geomatics. https://doi.org/10.1007/s12518-019-00268-5
21. Ren, X., Zhang, X., Xie, W., Zhang, K., Yuan, Y., & Li, X. (2016). Global Ionospheric Modelling using Multi-GNSS: BeiDou, Galileo, GLONASS and GPS. Scientific Reports, 6(September), 1–11. https://doi.org/10.1038/srep33499
22. Romero-Andrade, R., Trejo-Soto, M. E., Vega-Ayala, A., Hernádez-Andrade, D., Vázquez-Ontiveros, J. R., & Sharma, G. (2021). Positioning evaluation of single and dual-frequency low-cost GNSS Receivers Signals Using PPP and Static Relative Methods in Urban Areas. Applied Sciences (Switzerland), 1–17.
https://doi.org/https://doi.org/10.3390/ app112210642
23. Romero-Andrade, R., Zamora-Maciel, A., Uriarte-Adrián, J. D. J., Pivot, F., & Trejo-Soto, M. E. (2019). Comparative analysis of precise point positioning processing technique with GPS low-cost in different technologies with academic software. Measurement: Journal of the International Measurement Confederation, 136.
https://doi.org/10.1016/j.measurement.2018.12.100
24. Romero-Andrade, Rosendo, Cabanillas-Zavala, J. L., Hernández-Andrade, D., Trejo-Soto, M. E., & Monjardin-Armenta, S. A. (2020). Análisis comparativo del posicionamiento GNSS utilizando receptor de bajo costo U-Blox de doble frecuencia para aplicaciones topógrafo-geodésicas. European Scientific Journal, 16(27), 289–312.
https://doi.org/10.19044/esj.2020.v16n27p289
25. Romero-Andrade, Rosendo, Trejo-Soto, M. E., Vázquez-Ontiveros, J. R., Hernández-Andrade, D., & Cabanillas-Zavala, J. L. (2021). Sampling rate impact on Precise Point Positioning with a Low-Cost GNSS receiver. Applied Sciences (Switzerland), 11(GNSS Techniques for Land and Structure Monitoring), 17. https://doi.org/https:// doi.org/10.3390/app11167669
26. Souto, M. S. (2014). Análisis de calidad y preprocesamiento de datos GNSS de la estación permanente UCOR (Córdoba, Argentina). Revista de la Facultad de Ciencias Exactas, Físicas y Naturales, 1(1), 91. https://revistas.unc.edu.ar/index.php/FCEFyN/article/view/6971
27. Spofford, P. R., & Remondi, B. W. (1994). The national geodetic survey standard GPS format SP3. SP3-a Format) Available from the IGS
Website: Http://Igscb. Jpl. Nasa. Gov/Igscb/Data/Format/Sp3_docu. Txt.
28. Tomaštík, J., Saloň, Š., & Piroh, R. (2017). Horizontal accuracy and applicability of smartphone GNSS positioning in forests. Forestry, 90(2), 187–198. https://doi.org/10.1093/forestry/cpw031
29. Topcon. (2009). Manual Reference Topcon Tools (p. 606). Topcon Tools Reference Manual.
30. Tsakiri, M., Sioulis, A., & Piniotis, G. (2018). The use of low-cost, single-frequency GNSS receivers in mapping surveys. Survey Review, 50(358), 46–56. https://doi.org/10.1080/00396265.2016.1222344
31. Tsakiri, Maria, Sioulis, A., & Piniotis, G. (2017). Compliance of low-cost, single-frequency GNSS receivers to standards consistent with ISO for control surveying. International Journal of Metrology and Quality Engineering, 8. https://doi.org/10.1051/ijmqe/2017006
32. Tunini, L., Zuliani, D., & Magrin, A. (2022). Applicability of Cost-Effective GNSS sensor for crustal deformation studies. Sensors (Basel, Switzerland).
33. Wang, J., & Yang, N. (2021). Economical GNSS Chipset for Application in Structural Health & Deformation Monitoring Solution. Smart Surveyors for Land and Water Management - Changes in a New Reality Virtually in the Netherlands, June 2021, 21–25.
34. Wen, Q., Geng, J., Li, G., & Guo, J. (2020). Precise point positioning with ambiguity resolution using an external survey-grade antenna enhanced dual-frequency android GNSS data. Measurement: Journal of the International Measurement Confederation, 157, 107634. https://doi.org/10.1016/j.measurement.2020.107634
35. Xiao, Y., Yao, M. H., Tang, S. H., Liu, H. F., Xing, P. W., & Zhang, Y. (2020). Data Quality Check and Visual Analysis of Cors Station Based on Anubis Software. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3/W10(November 2019), 1295–1300.
https://doi.org/10.5194/isprs-archives-xlii-3-w10-1295-2020
36. Yeh, T. K., Liou, Y. A., Wang, C. S., & Chen, C. S. (2008). Identifying the degraded environment and bad receivers setting by using the GPS data quality indices. Metrologia, 45(5), 562–570.
https://doi.org/10.1088/0026-1394/45/5/010
37. Yeh, T. K., Wang, C. S., Chao, B. F., Chen, C. S., & Lee, C. W. (2007). Automatic data-quality monitoring for continuous GPS tracking stations in Taiwan. Metrologia, 44(5), 393–401.
https://doi.org/10.1088/0026-1394/44/5/016
38. Zamora-Maciel, A., Romero-Andrade, R., Moraila-Valenzuela, C. R., & Pivot, F. (2020). Evaluación de receptores GPS de bajo costo de alta sensibilidad para trabajos geodésicos . Caso de estudio : línea base geodésica Evaluación de receptores GPS de bajo costo de alta sensibilidad para trabajos geodésicos. Ciencia Ergo-Sum, 27, 0–17.
39. Zhang, R., Gao, C., Pan, S., & Shang, R. (2020). Fusion of GNSS and speedometer based on VMD and its application in bridge deformation monitoring. Sensors (Switzerland), 20(3).
https://doi.org/10.3390/s20030694
Copyright (c) 2022 Naccieli Bojorquez-Pacheco, Rosendo Romero-Andrade, Manuel E. Trejo-Soto, Daniel Hernández-Andrade, Manuel Trejo-Echeagaray
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.