Análisis Comparativo del Posicionamiento Preciso Utilizando el Receptor de Bajo Costo GNSS ZED-F9P en Conjunto con la Antena BEIBT300 y Diferentes Modelos de Antena de Orden Geodésico
Abstract
Con el avance de la Geodesia y la mejora de las especificaciones técnicas de los receptores de bajo costo, los GNSS abren nuevas alternativas para investigar las capacidades técnicas y rendimiento real que proveen este tipo de receptores para diferentes propósitos geodésicos. En este contexto, la precisión alcanzable fue analizada usando el receptor de bajo costo GNSS ZED-F9P en conjunto con dos antenas de orden geodésico (ASH701975.01B y LEIAS10 NONE) y una antena de bajo costo (BEIBT300 NONE). Las observaciones GNSS fueron llevadas a cabo en un periodo de dos días para cada modelo de antena. El análisis fue realizado en tiempos de observación de 12, 6 y 1 h, respectivamente. Estas observaciones fueron procesadas usando el método relativo estático mediante la inclusión de una estación de referencia continua del Instituto Nacional de Estadística y Geografía, la cual está localizada a una distancia aproximada de 4 km. Los resultados demuestran que la mayor precisión es lograda en un periodo de 12 h, con diferencias mínimas de 3 cm para la componente Norte y 33 cm para la vertical. En este sentido, la solución menos precisa es obtenida en el periodo de 1 h resultando diferencias de 70 cm, 46 cm y 2.3 m para la componente Norte, Este y vertical respectivamente.
With advancements in geodesy and enhancements in the technical specifications of low-cost receivers, GNSS opens up new avenues for investigating the capabilities and performance provided by these receivers for various geodetic purposes. In this context, the precision achievable using the low-cost GNSS receiver ZED-F9P in conjunction with two geodetic antennas (ASH701975.01B and LEIAS10 NONE) and a low-cost antenna (BEIBT300 NONE) was analyzed. GNSS observations were conducted over a 2-day period for each antenna model. The analysis involved observation durations of 12, 6, and 1 h. These observations were processed using the static relative method alongside a continuously operating GNSS station from the Active National Geodetic Network of the National Institute of Statistics and Geography, situated at ~4 km. The results demonstrate that the highest precision was achieved over a 12 h period, with minimal differences of 3 cm for the North component and 33 cm for the vertical component. Conversely, the least accurate solution was obtained within a 1 h observation period, resulting in differences of up to 70 cm, 46 cm, and 2.3 m for the North, East, and vertical components, respectively.
Downloads
Metrics
PlumX Statistics
References
2. Bojorquez-Pacheco, N., Romero-Andrade, R., Trejo-Soto, M.E., Hernández-Andrade, D., Nayak, K., Vidal-Vega, A.I., Arana-Medina, A.I., Sharma, G., Acosta-gonzález, L.E., Serrano-Agila, R., 2023. Performance evaluation of single and double-frequency low-cost GNSS receivers in Static Relative mode. Geod. Vestn. 67, 244–257. https://doi.org/10.15292/geodetski-vestnik.2023.02.244-257
3. Borio, D., Raiola, F., Gioia, C., Štefula, V., Hubert, P., 2022. Low-Cost GNSS Receivers for Radiometric Surveying: an Experimental Assessment, in: Proceedings of the 35th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022). 35th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022), pp. 889–907. https://doi.org/10.33012/2022.18526
4. Caldera, S., Realini, E., Barzaghi, R., Reguzzoni, M., Sansò, F., 2016. Experimental Study on Low-Cost Satellite-Based Geodetic Monitoring over Short Baselines. J. Surv. Eng. 142. https://doi.org/10.1061/(asce)su.1943-5428.0000168
5. Cina, A., Piras, M., 2015. Performance of low-cost GNSS receiver for landslides monitoring: test and results. Geomatics, Nat. Hazards Risk 6, 497–514. https://doi.org/10.1080/19475705.2014.889046
6. Dumka, R.K., SuriBabu, D., Kotlia, B.S., Kothyari, G.C., Prajapati, S., 2022. Crustal deformation measurements by global positioning system (GPS) along NSL, western India. Geod. Geodyn. 13, 254–260. https://doi.org/10.1016/j.geog.2021.05.004
7. Estey, L., Wier, S., 2014. Teqc Tutorial: basics of Teqc use and Teqc products.
8. Garate, J., Martin-Davila, J., Khazaradze, G., Echeverria, A., Asensio, E., Gil, A.J., de Lacy, M.C., Armenteros, J.A., Ruiz, A.M., Gallastegui, J., others, 2015. Topo-Iberia project: CGPS crustal velocity field in the Iberian Peninsula and Morocco. GPS Solut. 19, 287–295.
9. García-Armenteros, J.A., 2023. Topo-Iberia CGPS network : A new 3D crustal velocity field in the Iberian Peninsula and Morocco based on eleven years ( 2008 – 2019 ). GPS Solut. 27, 1–16. https://doi.org/10.1007/s10291-023-01484-8
10. Garrido-Carretero, M.S., de Lacy-Pérez de los Cobos, M.C., Borque-Arancón, M.J., Ruiz-Armenteros, A.M., Moreno-Guerrero, R., Gil-Cruz, A.J., 2019. Low-cost GNSS receiver in RTK positioning under the standard ISO-17123-8: A feasible option in geomatics. Meas. J. Int. Meas. Confed. 137, 168–178.
https://doi.org/10.1016/j.measurement.2019.01.045
11. Gill, M., Bisnath, S., Aggrey, J., Seepersad, G., 2017. Precise Point Positioning (PPP) using low-cost and ultra-low-cost GNSS receivers. 30th Int. Tech. Meet. Satell. Div. Inst. Navig. ION GNSS 2017 1, 226–236. https://doi.org/10.33012/2017.15123
12. Hamza, V., Stopar, B., Sterle, O., Pavlovčič-Prešeren, P., 2023. A Cost-Effective GNSS Solution for Continuous Monitoring of Landslides. Remote Sens. 15. https://doi.org/10.3390/rs15092287
13. Hernández-Andrade, Daniel, de Lacy-Pérez de los Cobos, M.C.P., Romero-Andrade, R., Trejo-Soto, M.E., 2024. Statistical Comparison of Geodetic Baseline for Topographic – Geodetic Purposes Using a Low-Cost GNSS Receiver and Electromagnetic Distance Measurement. J. Surv. Eng. 150, 1–10.
https://doi.org/10.1061/JSUED2.SUENG-1446
14. Hernández-Andrade, Daniel, Romero-Andrade, R., Sharma, G., Trejo-Soto, M.E., Cabanillas-Zavala, J.L., 2022. Quality assessment of Continuous Operating Reference Stations (CORS) - GPS stations in Mexico. Geod. Geodyn. 13.
https://doi.org/10.1016/j.geog.2021.12.003
15. Hofmann-Wellenhof, B., Lichtenegger, H., Wasle, E., 2008. GNSS Global Navigation Satellite System GPS, GLONASS, Galileo and more. Springer Wien New York.
16. Hohensinn, R., Stauffer, R., Glaner, M.F., Herrera Pinzón, I.D., Vuadens, E., Rossi, Y., Clinton, J., Rothacher, M., 2022. Low-Cost GNSS and Real-Time PPP: Assessing the Precision of the u-blox ZED-F9P for Kinematic Monitoring Applications. Remote Sens. 14, 1–25. https://doi.org/10.3390/rs14205100
17. INEGI, 2016. Procesamiento de datos GPS considerando deformaciones del Marco Geodésico.
18. Janos, D., Kuras, P., 2021. Evaluation of Low-Cost GNSS Receiver under Demanding Conditions in RTK Network Mode. Sensors (Basel). 21. https://doi.org/https://doi.org/10.3390/s21165552
19. Kazmierski, K., Dominiak, K., Marut, G., 2023. Positioning performance with dual-frequency low-cost GNSS receivers. J. Appl. Geod. https://doi.org/10.1515/jag-2022-0042
20. Krietemeyer, A., Van der Marel, H., Van de Giesen, N., Ten Veldhuis, M.-C., 2022. A Field Calibration Solution to Achieve High-Grade-Level Performance for Low-Cost Dual-Frequency GNSS Receiver and Antennas. Sensors (Basel). 22.
https://doi.org/https://doi.org/10.3390/s22062267
21. Kumar, A., Anurag, G., 2023. Accuracy Assessment of Relative GPS as a Function of Distance and Duration for CORS Network. J. Indian Soc. Remote Sens. 4. https://doi.org/10.1007/s12524-023-01701-4
22. Mustafa M. Amami, 2022. The Advantages and Limitations of Low-Cost Single Frequency GPS/MEMS-Based INS Integration. Glob. J. Eng. Technol. Adv. 10, 018–031.
https://doi.org/10.30574/gjeta.2022.10.2.0031
23. Nayak, K., López-Urias, C., Romero-Andrade, R., Sharma, G., Guzman-Acevedo, G.M., Trejo-Soto, M.E., 2023a. Ionospheric Total Electron Content ( TEC ) Anomalies as Earthquake Precursors : Unveiling the Geophysical Connection Leading to the 2023 Moroccan 6 . 8 Mw Earthquake. Geosci. 13.
https://doi.org/doi.org/10.3390/geosciences13110319
24. Nayak, K., López-Urias, C., Romero-Andrade, R., Sharma, G., Trejo-Soto, M.E., 2023b. Analysis of Seismo-Ionospheric Irregularities Using the Availa- ble PRNs vTEC from the Closest Epicentral cGPS Stations for Large Earthquakes, in: Environmental Sciencies Proceedings. MDPI, pp. 1–7. https://doi.org/10.3390/ecas2023-15144
25. Nayak, K., Romero-Andrade, R., Sharma, G., Cabanillas-Zavala, J.L., López-Urias, C., Trejo-Soto, M.E., Aggarwal, S.P., 2023c. A combined approach using b-value and ionospheric GPS-TEC for large earthquake precursor detection : a case study for the Colima earthquake of 7 . 7 M w , Mexico. Acta Geod. Geophys. https://doi.org/10.1007/s40328-023-00430-x
26. Newham, C., Rosenblatt, B., 2005. Learning the bash shell: Unix shell programming. “ O’Reilly Media, Inc.”
27. Romero-Andrade, R., Cabanillas-zavala, J.L., Hernández-andrade, D., Trejo-soto, M.E., Monjardin-armenta, S.A., 2020. Análisis Comparativo Del Posicionamiento GNSS Utilizando Receptor De Bajo Costo U-Blox De Doble Frecuencia Para Aplicaciones Topógrafo-Geodésicas. Eur. Sci. J. 16, 289–312.
https://doi.org/10.19044/esj.2020.v16n27p289
28. Romero-Andrade, R., Trejo-Soto, M.E., Vázquez-Ontiveros, J.R., Hernández-Andrade, D., Cabanillas-Zavala, J.L., 2021. Sampling rate impact on Precise Point Positioning with a Low-Cost GNSS receiver. Appl. Sci. 11, 17.
https://doi.org/https:// doi.org/10.3390/app11167669
29. Romero-Andrade, R., Trejo-soto, M.E., Vega-ayala, A., Hernádez-Andrade, D., Vázquez-Ontiveros, J.R., Sharma, G., 2021. Positioning Evaluation of Single and Dual-Frequency Low-Cost GNSS Receivers Signals Using PPP and Static Relative Methods in Urban Areas. Appl. Sci. 1–17. https://doi.org/https://doi.org/10.3390/ app112210642
30. Romero-Andrade, R., Zamora-Maciel, A., Uriarte-Adrián, J.D.J., Pivot, F., Trejo-Soto, M.E., 2019. Comparative analysis of precise point positioning processing technique with GPS low-cost in different technologies with academic software. Meas. J. Int. Meas. Confed. 136. https://doi.org/10.1016/j.measurement.2018.12.100
31. Sanna, G., Pisanu, T., Garau, S., 2022. Behavior of Low-Cost Receivers in Base-Rover Configuration with Geodetic-Grade Antennas. Sensors 22, 1–17. https://doi.org/10.3390/s22072779
32. Sharma, G., Saikia, P., Walia, D., Banerjee, P., Raju, P.L.N., 2020. TEC anomalies assessment for earthquakes precursors in North-Eastern India and adjoining region using GPS data acquired during 2012–2018. Quat. Int. https://doi.org/10.1016/j.quaint.2020.07.009
33. Sharma, G., Singh, M.S., Aggarwal, S.P., Romero-Andrade, R., 2023. Integrated observations on crustal strain ‑ ionosphere total electron content anomalies before the earthquake. Acta Geophys. 71, 1173. https://doi.org/10.1007/s11600-023-01030-7
34. Spofford, P.R., Remondi, B.W., 1994. The national geodetic survey standard GPS format SP3. SP3-a format) available from IGS website http//igscb. jpl. nasa. gov/igscb/data/format/sp3_docu. txt.
35. Takasu, T., 2013. RTKLIB 2.4.2 Manual.
36. Topcon, 2009. Manual Reference Topcon Tools.
37. Tsakiri, M., Sioulis, A., Piniotis, G., 2018. The use of low-cost, single-frequency GNSS receivers in mapping surveys. Surv. Rev. 50, 46–56. https://doi.org/10.1080/00396265.2016.1222344
38. Tsakiri, M., Sioulis, A., Piniotis, G., 2017. Compliance of low-cost, single-frequency GNSS receivers to standards consistent with ISO for control surveying. Int. J. Metrol. Qual. Eng. 8. https://doi.org/10.1051/ijmqe/2017006
39. Tunini, L., Zuliani, D., Magrin, A., 2022. Applicability of Cost-Effective GNSS sensor for crustal deformation studies. Sensors (Basel).
40. Ublox, 2023. ZED-F9P-02B Data sheet.
41. Wielgocka, N., Hadas, T., Kaczmarek, A., Marut, G., 2021. Feasibility of using low-cost dual-frequency gnss receivers for land surveying. Sensors 21, 1–14. https://doi.org/10.3390/s21061956
42. Yigit, C.O., Gurlek, E., 2017. Experimental testing of high-rate GNSS precise point positioning (PPP) method for detecting dynamic vertical displacement response of engineering structures. Geomatics, Nat. Hazards Risk 5705, 1–12.
https://doi.org/10.1080/19475705.2017.1284160
43. Zahradník, D., Vyskočil, Z., Hodík, Š., 2022. Ublox F9P for Geodetic Measurement. Stavební Obz. - Civ. Eng. J. 31, 110–119. https://doi.org/10.14311/cej.2022.01.0009
44. Zamora-Maciel, A., Romero-Andrade, R., Moraila-Valenzuela, C.R., Pivot, F., 2020. Evaluación de receptores GPS de bajo costo de alta sensibilidad para trabajos geodésicos . Caso de estudio : línea base geodésica. Cienc. ergo-sum 27, 0–17.
https://doi.org/https://doi.org/10.30878/ces.v26n2a5
45. Zhang, L., Schwieger, V., 2016. Improving the Quality of Low-Cost GPS Receiver Data for Monitoring Using Spatial Correlations. J. Appl. Geod. 10, 119–129. https://doi.org/10.1515/jag-2015-0022
Copyright (c) 2024 Lizbeth G. Santiago-Sánchez, Rosendo Romero-Andrade, Manuel E. Trejo-Soto, Daniel Hernández-Andrade, Yedid G. Zambrano-Medina, Norberto Alcántar-Elizondo, Naccieli Bojorquez-Pacheco, Rafaela M. Llanes-Hernández, Aníbal I. Arana-Medina, José M. Briseño-Morán, Richard Serrano-Agila
This work is licensed under a Creative Commons Attribution 4.0 International License.