Performances économique et financière des systèmes de culture du Cajanus cajan au Bénin en Afrique de l’Ouest
Abstract
La non-comptabilisation des revenus des cultures secondaires comme le Cajanus cajan menace la viabilité des petites exploitations agricoles du Bénin. Cette étude examine l’effet des systèmes de culture sur la performance économique et financière du pois d’Angole au Centre du Bénin. Les données ont été collectées à travers une enquête auprès de 240 producteurs de pois d’Angole choisis de façon aléatoire. Une régression simultanée apparemment sûre et des indicateurs économiques et financiers sont mobilisés pour apprécier la performance de la production du pois d’Angole. Les résultats montrent six différents systèmes de culture de pois d’Angole. L'analyse révèle que tous sont rentables, mais les systèmes 1 et 2 offrent de meilleures marges nettes, et les systèmes 1 et 3 sont les plus productifs en matière de productivité moyenne du travail et avantageux en termes de ratio bénéfice-coût. Les systèmes 5 et 6 sont les moins performants. Le modèle indique que les systèmes 1, 2 et 4 améliorent simultanément les trois indicateurs de performance. Pour la production du pois d'Angole, le choix du système de culture impacte la rémunération du travail et le gain financier, sans nécessairement affecter la marge nette. Ainsi, pour accroître les revenus des agriculteurs grâce à cette spéculation, il est essentiel de se concentrer sur les systèmes de culture les plus performants économiquement et financièrement.
Failure to account for income from secondary crops such as Cajanus cajan threatens the viability of smallholder farms in Benin. This study examines the effect of cropping systems on the economic and financial performance of pigeon pea in central Benin. Data were collected through a survey of 240 randomly selected pigeon pea growers. A seemingly safe simultaneous regression and economic and financial indicators are mobilized to assess the performance of pigeon pea production. The results show six different pigeon pea cropping systems. The analysis reveals that all are profitable, but systems 1 and 2 offer better net margins, and systems 1 and 3 are the most productive in terms of average labor productivity and advantageous in terms of benefit-cost ratio. Systems 5 and 6 are the least productive. The model shows that systems 1, 2 and 4 simultaneously improve all three performance indicators. For pigeon pea production, the choice of cropping system has an impact on labor remuneration and financial gain, without necessarily affecting the net margin. So, to increase farmers' income from this crop, it is essential to focus on the most economically and financially efficient cropping systems.
Downloads
Metrics
PlumX Statistics
References
2. Abid Karray, J. (2006). Bilan hydrique d’un système de cultures intercalaires (Olivier-Culture maraîchère) en Tunisie Centrale : Approche expérimentale et essai de modélisation. PhD Thesis, École nationale supérieure agronomique, Montpellier. https://horizon.documentation.ird.fr/exl-doc/pleins_textes/2022-03/010045773.pdf
3. Adjei-Nsiah, S. (2012). Role of pigeonpea cultivation on soil fertility and farming system sustainability in Ghana. International Journal of Agronomy, 2012, 1–9. https://doi.org/10.1155/2012/702506
4. Agalati, B., & Degla, P. (2020). Effet des coûts de transaction sur la performance économique et l’adoption du coton biologique au Centre et Nord du Bénin. International Journal of Biological and Chemical Sciences, 14(4), 1416–1431. https://doi.org/10.4314/ijbcs.v14i4.20
5. Ahmadzai, H. (2020). How is off-farm income linked to on-farm diversification? Evidence from Afghanistan. Studies in Agricultural Economics, 122(1), 1–12. https://doi.org/10.7896/j2010
6. Aihou, K., Sanginga, N., Vanlauwe, B., Diels, J., Merkx, R., & Van Cleemput, O. (2006). Soil factors limiting growth and establishment of pigeon pea (Cajanus cajan (L) millsp) in farmers’ fields in the derived savanna of Benin. Bulletin de la Recherche Agronomique du Bénin, Juin 2006(52), 12-21.
7. Akpo, F.I., Dohou, M.D., Houessingbe, Z., & Yabi, J.A. (2021). Analyse comparative des systèmes de production de soja basés sur l’utilisation de l’inoculum dans un contexte de gestion durable des terres au Centre du Bénin. International Journal of Innovation and Applied Studies, 32(2), 230-239.
8. Akpo, I.F., Dohou, M.D., & Houessingbe, Z. (2022). Off-season onion production in North Benin : An analysis of technical efficiency through the stochastic approach. African Scientific Journal, 3(14), 142–142. https://doi.org/10.5281/zenodo.7248517
9. Alla, W.H., Shalaby, E.M., Dawood, R.A., & Zohry, A.A. (2015). Effect of cowpea (Vigna sinensis L.) with maize (Zea mays L.) intercropping on yield and its components. International Journal of Agricultural and Biosystems Engineering, 8(11), 1258–1264. https://doi.org/10.5281/zenodo.1326836
10. Alshurideh, M., Al Kurdi, B., Abu Hussien, A., & Alshaar, H. (2017). Determining the main factors affecting consumers’ acceptance of ethical advertising: A review of the Jordanian market. Journal of Marketing Communications, 23(5), 513–532. https://doi.org/10.1080/13527266.2017.1322126
11. Ameh, M., & Andrew, I.C. (2017). Socio-economic factors influencing agricultural loan acquisition among small-scale rice farmers in benue state, Nigeria. International Journal of Innovative Agriculture & Biology Research, 5(4), 8-17.
12. Ameh, M., & Lee, S.H. (2022). Determinants of Loan Acquisition and Utilization among Smallholder Rice Producers in Lagos State, Nigeria. Sustainability, 14(7), 3900. https://doi.org/10.3390/su14073900
13. Aminou, F.A.A. (2021). Efficacité technique des petits producteurs du maïs au Bénin. European Scientific Journal, 14(19), 110–134. http://dx.doi.org/10.19044/esj.2018.v14n19p109
14. Anderson, E.N. (2014). Everyone eats : Understanding food and culture. New York University (NYU) Press, New York and London.
15. Arouri, M.E.H., & Rault, C. (2010). Les effets des fluctuations du prix du pétrole sur les marchés boursiers dans les pays du Golfe. Revue économique 61(5), 945–959. https://doi.org/10.3917/reco.615.0945
16. Asiwe, J.N.A., & Madimabe, K.S. (2020). Performance and economic prospect of pigeonpea varieties in pigeonpea-maize strip intercropping in Limpopo Province. International Journal of Agriculture & Biology, 25(1), 20–26. https://doi.org/10.17957/IJAB/15.1633
17. Asogwa, B.C., Abu, O., & Ochoche, G.E. (2014). Analysis of peasant farmers’ access to agricultural credit in Benue State, Nigeria. British Journal of Economics, Management & Trade, 4(10), 1525-1543.
18. Ayenan, M.A.T. (2016). Assessment of phenotypic diversity and farmers’ knowledge of cultivation an utilization of pigeon pea (Cajanus cajan (L.) Millspaugh) in Benin. MPhil Thesis, University of Ghana. https://afribary.com/works/assessment-of-phenotypic-diversity-and-farmers-knowledge-of-cultivation-and-utilization-of-pigeon-pea-cajanus-cajan-l-millspaugh
19. Ayenan, M.A.T., Danquah, A., Ahoton, L.E., & Ofori, K. (2017a). Utilization and farmers’ knowledge on pigeonpea diversity in Benin, West Africa. Journal of Ethnobiology and Ethnomedicine 13(37), 1–13. https://doi.org/10.1186/s13002-017-0164-9
20. Ayenan, M.A.T., Ofori, K., Ahoton, L.E., & Danquah, A. (2017b). Pigeonpea [(Cajanus cajan (L.) Millsp.)] production system, farmers’ preferred traits and implications for variety development and introduction in Benin. Agriculture & Food Security, 6(1), 1–11. https://doi.org/10.1186/s40066-017-0129-1
21. Ayilara, M.S., Abberton, M., Oyatomi, O.A., Odeyemi, O., & Babalola, O.O. (2022). Potentials of underutilized legumes in food security. Frontiers in Soil Science, 2(1020193), 1–12. https://doi.org/10.3389/fsoil.2022.1020193
22. Babah-Daouda, M., & Yabi, A.J. (2021). Efficacité Economique Des Producteurs Du Piment Et De La Tomate Adoptants Les Stratégies D’Adaptation Face Aux Variabilités Climatiques Dans Les Communes De Djougou Et De Tanguiéta Au Nord-Ouest Du Benin. International Journal of Progressive Sciences and Technologies (IJPSAT), 28(1), 303-320.
23. Bandara, B.E.S., De Silva, D.A.M., Maduwanthi, B.C.H., & Warunasinghe, W. (2016). Impact of food labeling information on consumer purchasing decision: with special reference to faculty of Agricultural Sciences. Procedia Food Science, 6, 309–313. https://doi.org/10.1016/j.profoo.2016.02.061
24. Bazie, Y.G., Le Cotty, T., D’hôtel, É.M., Ouattara, D.O., Sanou, A., 2020. Pourquoi une relation positive entre taille des exploitations et productivité au Burkina Faso ? Économie rurale 371(1), 37–58. https://doi.org/10.4000/economierurale.7592
25. Becker, G.S. (1976). The economic approach to human behavior. Economic Theory. University of Chicago press, Chicago and London.
26. Begna, T. (2021). Role and economic importance of crop genetic diversity in food security. International Journal of Agricultural Science and Food Technology, 7(1), 164–169. https://dx.doi.org/10.17352/2455-815X.000104
27. Bezirgani, A. (2021). Analyse du lien entre les déplacements vers les épiceries et l’achat d’aliments en ligne chez les aînés québécois : une application de la théorie du comportement planifié. Thèse de doctorat, Université du Québec à Montréal. https://archipel.uqam.ca/14684/1/D4028.pdf
28. Biswas, B., Mallick, B., Roy, A., & Sultana, Z. (2021). Impact of agriculture extension services on technical efficiency of rural paddy farmers in southwest Bangladesh. Environmental Challenges, 5, 100261. https://doi.org/10.1016/j.envc.2021.100261
29. Budiastutik, I., & Nugraheni, S.A. (2018). Determinant of stunting in Indonesia: A review article. International Journal of Healthcare Research, 1(1), 2620-5580.
30. Chanda Venkata, S.K., Nadigatla Veera Prabha Rama, G.R., Saxena, R.K., Saxena, K., Upadhyaya, H.D., Siambi, M., Silim, S.N., Reddy, K.N., Hingane, A.J., & Sharma, M. (2019). Pigeonpea improvement: An amalgam of breeding and genomic research. Plant Breeding, 138(4), 445–454. https://doi.org/10.1111/pbr.12656
31. Chauhan, N., Vaidya, D., & Pandit, A. (2018). Underutilized grains of Himalayan Region: A mini review. Journal of Pharmacognosy and Phytochemistry, 7(1), 1044-1047
32. Chou, H.-L., & Chou, C. (2019). A quantitative analysis of factors related to Taiwan teenagers’ smartphone addiction tendency using a random sample of parent-child dyads. Computers in Human Behavior, 99, 335–344. https://doi.org/10.1016/j.chb.2019.05.032
33. Dansi, A., Vodouhè, R., Azokpota, P., Yedomonhan, H., Assogba, P., Adjatin, A., Loko, Y.L., Dossou-Aminon, I., & Akpagana, K. (2012). Diversity of the neglected and underutilized crop species of importance in Benin. The scientific world journal, 2012, 1–20. https://doi.org/10.1100/2012/932947
34. Degla, P.K. (2020). Analyse comparative des performances économiques des systèmes de production du maïs dans la commune de Banikoara au Nord-Bénin. Sciences de la vie, de la terre et agronomie, 8(1), 56-64.
35. DGCS-ODD (2019). Spatialisation des cibles prioritaires des ODD au Bénin : Monographie des départements du Zou et des Collines (Monographie). Direction Générale de la Coordination et du Suivi des Objectifs de Développement Durable, République du Bénin. Accessed on June 20, 2023, from https://docplayer.fr/210627693-Spatialisation-des-cibles-prioritaires-des-odd-au-benin-monographie-des-departements-du-zou-et-des-collines.html
36. Dossa, F.K., Todota, C.T., & Miassi, Y.E. (2018). Analyse comparée de la performance économique des cultures de coton et de maïs au Nord-Bénin: cas de la commune de Kandi. International Journal of Current Innovations in Advanced Research, 1(6), 118-130
37. Egbe, O.M., & Vange, T. (2008). Yield and agronomic characteristics of 30 pigeon pea genotypes at Otobi in Southern Guinea Savanna of Nigeria. Life Science Journal, 5(2), 70-80
38. Emefiene, M.E., Joshua, V.I., Nwadike, C., Yaroson, A.Y., & Zwalnan, N.D.E. (2014). Profitability analysis of Pigean pea (Cajanus cajan) production in Riyom LGA of Plateau State. International Letters of Natural Sciences, 13(2), 73-88. https://doi.org/10.18052/www.scipress.com/ILNS.18.73
39. Far, S.T., & Rezaei-Moghaddam, K. (2018). Impacts of the precision agricultural technologies in Iran: An analysis experts’ perception & their determinants. Information Processing in Agriculture, 5(1), 173–184. https://doi.org/10.1016/j.inpa.2017.09.001
40. Feng, S. (2008). Land rental, off-farm employment and technical efficiency of farm households in Jiangxi Province, China. NJAS-Wageningen Journal of Life Sciences, 55(4), 363–378. https://doi.org/10.1016/S1573-5214(08)80026-7
41. Fossou, R.K., Ziegler, D., Zeze, A., Barja, F., & Perret, X. (2016). Two major clades of bradyrhizobia dominate symbiotic interactions with pigeonpea in fields of Côte d’Ivoire. Frontiers in microbiology, 7, 1793. https://doi.org/10.3389/fmicb.2016.01793
42. Gwata, E.T., & Shimelis, H. (2013). Evaluation of pigeonpea germplasm for important agronomic traits in Southern Africa. In : Goyal A, Asif M (Eds.), Crop Production. IntechOpen. https://doi.org/10.5772/56094
43. Haralayya, B., & Aithal, P.S. (2021). Factors Determining The Efficiency In Indian Banking Sector: A Tobit Regression Analysis. International Journal of Science & Engineering Development Research (www. ijsdr. org), 6(6), 1-6. http://www.ijsdr.org/papers/IJSDR2106001.pdf
44. Hardev, C. (2016). Performance of farmers’ pigeon pea [Cajanus cajan L. Millsp.] varieties: opportunities for sustained productivity and dissemination of varieties. International Journal of Agriculture Sciences, 8(61), 3471-3474.
45. Hashmiu, I., Adams, F., Etuah, S., & Quaye, J. (2024). Food-cash crop diversification and farm household welfare in the Forest-Savannah Transition Zone of Ghana. Food Sec. https://doi.org/10.1007/s12571-024-01434-3
46. Hauggaard-Nielsen, H., & Jensen, E.S. (2001). Evaluating pea and barley cultivars for complementarity in intercropping at different levels of soil N availability. Field Crops Research, 72(3), 185–196. https://doi.org/10.1016/S0378-4290(01)00176-9
47. Hessavi, M.P., Adegbola, Y.P., Hounmenou, J., Sedegnan, C.A.O., Dessouassi, E.C., Ajavon, Y., Sodjinou, E. (2019). Performance économique des exploitations piscicoles: une analyse par la fonction de profit dans les départements de l’atlantique et du littoral au Sud-Bénin. Presented at the 6th African Conference of Agricultural Economists, September 23-26, 2019, AgEcon Search, Abuja, Nigeria, pp. 1–24. Acessed on September 17, 2023, from file:///C:/Users/Ce%20PC/Downloads/436.%20Fish%20in%20Benin%20(1).pdf
48. Høgh-Jensen, H. (2011). To meet future food demands we need to change from annual grain legumes to multipurpose semi-perennial legumes. In : Aarhus University (Ed.), Food production-approaches, challenges and tasks (pp. 1–24), InTech, Denmark.
49. INSAE (2016). Cahier des villages et quartiers de ville du département des Collines (RGPH-4, 2013). Institut National de la Statistique et de l’Analyse Economique, Cotonou, Bénin. Accessed on September 28, 2023 from https://instad.bj/images/docs/insae-statistiques/enquetes-recensements/RGPH/1.RGPH_4/resultats%20finaux/Cahiers%20villages/Cahier%20des%20villages%20et%20quartiers%20de%20ville%20des%20Collines.pdf
50. Kaoneka, S.R., Saxena, R.K., Silim, S.N., Odeny, D.A., Ganga Rao, N.V.P.R., Shimelis, H.A., Siambi, M., & Varshney, R.K. (2016). Pigeonpea breeding in eastern and southern Africa: challenges and opportunities. Plant Breeding, 135(2), 148–154. https://doi.org/10.1111/pbr.12340
51. Karanja, J.W., Lagat, J.K., & Mutai, B.K. (2019). Market Participation of Smallholder Pigeon Pea Farmers in Makueni County, Kenya. Journal of Economics and Sustainable Development, 10(16), 2222-2855.
52. Kariyawasam, C.S., Kumar, L., & Ratnayake, S.S. (2019). Invasive plant species establishment and range dynamics in Sri Lanka under climate change. Entropy, 21(6), 571. https://doi.org/10.3390/e21060571
53. Kermah, M., Franke, A.C., Adjei-Nsiah, S., Ahiabor, B.D., Abaidoo, R.C., & Giller, K.E. (2017). Maize-grain legume intercropping for enhanced resource use efficiency and crop productivity in the Guinea savanna of northern Ghana. Field crops research, 213(2017), 38–50. https://doi.org/10.1016/j.fcr.2017.07.008
54. Khonde, G.P. (2021). Etude et modélisation de la productivité des systèmes de culture bases sur le semis direct sous couvert végétal dans la savane du sud-ouest de la République Démocratique du Congo, «cas de Mvuazi». Thèse de doctorat, Université Pédagogique Nationale (UPN) Kinshasa, Congo. https://hal.science/tel-03604999/
55. Kindemin, O.A., Houessingbe, Z., Hougni, A., Labiyi, I.A., & Yabi, J.A. (2023). Perception Paysanne de la Durabilité des Exploitations Cotonnières du Nord-Bénin. ESI Preprints, 17, 323–323. https://doi.org/10.19044/esipreprint.5.2023.p323
56. Kinhoégbè, G., Djèdatin, G., Loko, L.E.Y., Favi, A.G., Adomou, A., Agbangla, C., & Dansi, A. (2020). On-farm management and participatory evaluation of pigeonpea (Cajanus cajan [L.] Millspaugh) diversity across the agro-ecological zones of the Republic of Benin. Journal of ethnobiology and ethnomedicine, 16(1), 1–21. https://doi.org/10.1186/s13002-020-00378-0
57. Kinhoégbè, G., Djèdatin, G., Saxena, R.K., Chitikineni, A., Bajaj, P., Molla, J., Agbangla, C., Dansi, A., & Varshney, R.K. (2022). Genetic diversity and population structure of pigeonpea (Cajanus cajan [L.] Millspaugh) landraces grown in Benin revealed by Genotyping-By-Sequencing. Plos One, 17(7), e0271565. https://doi.org/10.1371/journal.pone.0271565
58. Knief, U., Forstmeier, W., 2021. Violating the normality assumption may be the lesser of two evils. Behav. Res. Methods, 53, 2576–2590. https://doi.org/10.3758/s13428-021-01587-5
59. Kousar, S., Ahmed, F., Pervaiz, A., & Bojnec, Š. (2021). Food insecurity, population growth, urbanization and water availability: the role of government stability. Sustainability, 13(22), 12336. https://doi.org/10.3390/su132212336
60. Kwak, S.G., & Kim, J.H. (2017). Central limit theorem: the cornerstone of modern statistics. Korean journal of anesthesiology, 70(2), 144–156. https://doi.org/10.4097/kjae.2017.70.2.144
61. Labiyi, I.A., Sigue, H., Ouattara, D.C., Traore, O.M., & Koura, D. (2019). Effet des pratiques innovantes endogènes de gestion durable des terres sur la performance technico-économique du réseau de producteurs dans la commune de Mani au Burkina Faso. Afrique science 15(1), 432-447.
62. MAEP-DPP (2020). Annuaire statistique agricoles années 2017 à 2019. Direction de la Programmation et de la Prospective du Ministère de l’Agriculture de l’Elevage et de la Pêche, Bénin. Accessed on April 22, 2023, from https://elearning.agriculture.gouv.bj/bibliotheque/upload/Annuaire%20statistique%20agricole%202017-2019%20B%C3%A9nin.pdf
63. Makena, N.S., Ngare, L., & Kago, E.W. (2022). Profitability Analysis of Pigeonpea Production Among Smallholder Farmers in Machakos County, Kenya. East African Agricultural and Forestry Journal, 88(2), 115-122.
64. Malinga, N.G., Masuku, M.B., & Raufu, M.O. (2015). Comparative analysis of technical efficiencies of smallholder vegetable farmers with and without credit access in swazil and the case of the Hhohho region. International Journal of Sustainable Agricultural Research, 2(4), 133-145.
65. Manyasa, E.O., Silim, S.N., & Christiansen, J.L. (2009). Variability patterns in Ugandan pigeonpea landraces. Journal of SAT Agricultural Research, 7, 1-9.
66. Mekonnen, D.A. (2024). Does household’s food and nutrient acquisition capacity predict linear growth in children? Analysis of longitudinal data from rural and small towns in Ethiopia. Food Sec. https://doi.org/10.1007/s12571-024-01430-7
67. Mergeai, G., Kimani, P., Mwang’ombe, A., Olubayo, F., Smith, C., Audi, P., Baudoin, J.-P., & Le Roi, A. (2001). Survey of pigeonpea production systems, utilization and marketing in semi-arid lands of Kenya. Biotechnology, Agronomy, Society and Environment, 5(3), 145-153.
68. Mishra, A.K., Kumar, A., Joshi, P.K., & D’Souza, A. (2018). Production Risks, Risk Preference and Contract Farming: Impact on Food Security in India. Applied Economic Perspectives and Policy, 40(3), 353–378. https://doi.org/10.1093/aepp/ppy017
69. Myaka, F.M., Sakala, W.D., Adu-Gyamfi, J.J., Kamalongo, D., Ngwira, A., Odgaard, R., Nielsen, N.E., & Høgh-Jensen, H. (2006). Yields and accumulations of N and P in farmer-managed intercrops of maize–pigeonpea in semi-arid Africa. Plant Soil, 285, 207–220. https://doi.org/10.1007/s11104-006-9006-6
70. Njira, K.O.W., Nalivata, P.C., Kanyama-Phiri, G.Y., & Lowole, M.W. (2012). Biological nitrogen fixation in sole and doubled-up legume cropping systems on the sandy soils of Kasungu, Central Malawi. Journal of Soil Science and Environmental Management, 3(9), 224–230.
71. Ntsama, M., & Pedelahore, P. (2010). L’orientation marchande est-elle un facteur prédominant à l’adoption des innovations agricoles ? CIRAD, Montpellier, France. https://agritrop.cirad.fr/557822/1/document_557822.pdf
72. Nuama, E. (2006). Measure of the Technical Efficiency of Women Farmers of Food Crops in Côte-d’Ivoire. Economie rurale, 296(6), 39-53.
73. Odeny, D.A. (2007). The potential of pigeonpea (Cajanus cajan (L.) Millsp.) in Africa. Natural Resources Forum, 31(4), 297–305. https://doi.org/10.1111/j.1477-8947.2007.00157.x
74. Ojwang, J.D., Nyankanga, R.O., Olanya, O.M., Ukuku, D.O., & Imungi, J. (2016). Yield components of vegetable pigeon pea cultivars. Subtropical Agriculture and Environments, 67, 1-12.
75. Ouédraogo, M., & Dakouo, D. (2017). Evaluation de l’adoption des variétés de riz NERICA dans l’Ouest du Burkina Faso. African Journal of Agricultural and Resource Economics, 12(311-2017‑726), 1–16. http://dx.doi.org/10.22004/ag.econ.258596
76. Pal, A.K., Singh, R.S., Shukla, U.N., & Singh, S. (2016). Growth and production potential of pigeonpea (Cajanus cajan L.) as influenced by intercropping and integrated nutrient management. Journal of Applied and Natural Science, 8(1), 179–183. https://doi.org/10.31018/jans.v8i1.770
77. Pastpipatkul, P., Maneejuk, P., & Sriboonchitta, S. (2015). Welfare measurement on Thai rice market: a Markov switching Bayesian seemingly unrelated regression. In: V.N. Huynh, M. Inuiguchi, T. Denoeux (Eds.), Integrated Uncertainty in Knowledge Modelling and Decision Making (pp. 464–477). Springer, Nha Trang, Vietnam. https://doi.org/10.1007/978-3-319-25135-6_42
78. Piedra-Muñoz, L., Galdeano-Gómez, E., & Pérez-Mesa, J.C. (2016). Is sustainability compatible with profitability? An empirical analysis on family farming activity. Sustainability, 8(9), 893. https://doi.org/10.3390/su8090893
79. Rached, Z., Chebil, A., & Khaldi, R. (2018). Effet de la taille sur l’efficacité technique des exploitations céréalières en Tunisie: Cas de la Région Subhumide. New Medit, 4(4), 82–89. https://doi.org/10.30682/nm1804g
80. Reddy, B.S.L., Nataraju , M.S., & Lakshminarayan, M.T. (2021). Attitude of Farmers towards Livelihood Diversification. International Journal of Current Microbiology and Applied Sciences, 10(1), 1032–1039. https://doi.org/10.20546/ijcmas.2021.1001.125
81. Rusere, F., Hunter, L., Collinson, M., & Twine, W. (2023). Nexus between summer climate variability and household food security in rural Mpumalanga Province, South Africa. Environmental Development, 47, 100892. https://doi.org/10.1016/j.envdev.2023.100892
82. Salez, P. (1988). Compréhension et amélioration de systèmes de culture associées céréale-légumineuse au Cameroun. Thèse de doctorat, Ecole Nationale Supérieure Agronomique de Montpellier (ENSAM), France. https://agritrop.cirad.fr/375802/1/document_375802.pdf
83. Sasson, A. (2012). Food security for Africa: an urgent global challenge. Agriculture & Food Security, 1(1), 1–16. https://doi.org/10.1186/2048-7010-1-2
84. Saxena, K.B., & Kumar, R.V. (2010). Quality nutrition through pigeonpea-a review. Health, 2(13), 35–44. http://dx.doi.org/10.4236/health.2010.211199
85. Sebillotte, M. (1990). Système de culture, un concept opératoire pour les agronomes. In: L. Combe, D. Picard (Eds.), Les Systèmes de Culture (pp. 165-196). INRA, Paris.
86. Senger, I., Borges, J.A.R., & Machado, J.A.D. (2017). Using the theory of planned behavior to understand the intention of small farmers in diversifying their agricultural production. Journal of rural studies, 49, 32–40. https://doi.org/10.1016/j.jrurstud.2016.10.006
87. Setsoafia, E.D., Ma, W., & Renwick, A. (2022). Effects of sustainable agricultural practices on farm income and food security in northern Ghana. Agricultural and Food Economics, 10(1), 1–15. https://doi.org/10.1186/s40100-022-00216-9
88. Sigue, H., Labiyi, I.A., Yabi, J.A., & Biaou, G. (2019). Effet des composantes de la technologie microdose sur la performance économique et financière des exploitations agricoles du Kouritenga et du Zondoma au Burkina Faso. African Crop Science Journal, 27(3), 331–349. https://doi.org/10.4314/acsj.v27i3.2
89. Sultana, M., Ahmed, J.U., & Shiratake, Y. (2020). Sustainable conditions of agriculture cooperative with a case study of dairy cooperative of Sirajgonj District in Bangladesh. Journal of Co-operative Organization and Management, 8(1), 100105. https://doi.org/10.1016/j.jcom.2019.100105
90. Szabo, S. (2016). Urbanisation and food insecurity risks: Assessing the role of human development. Oxford Development Studies, 44(1), 28–48. https://doi.org/10.1080/13600818.2015.1067292
91. Tabe-Ojong Jr, M.P., & Molua, E.L. (2017). Technical efficiency of smallholder tomato production in semi-urban farms in Cameroon: A stochastic frontier production approach. Journal of Management and Sustainability, 7(4), 27-35. https://doi.org/10.5539/jms.v7n4p27
92. Tokpon, H.M., & Yegbemey, R.N. (2020). Compétitivité du coton dans un contexte de relance de sa production dans la commune de Bembèrèkè au nord-est du Bénin. Bulletin de la Recherche Agronomique du Bénin (BRAB), Novembre 30(04), 55-63.
93. Traore, O.M., & Koura, D. (2019). Effet des pratiques innovantes endogènes de gestion durable des terres sur la performance technico-économique du réseau de producteurs dans la commune de Mani au Burkina Faso. Afrique science, 15(1), 432-447.
94. Varshney, R.K., Penmetsa, R.V., Dutta, S., Kulwal, P.L., Saxena, R.K., Datta, S., Sharma, T.R., Rosen, B., Carrasquilla-Garcia Farmer, A.D., & Dubey, A. (2010). Pigeonpea genomics initiative (PGI): an international effort to improve crop productivity of pigeonpea (Cajanus cajan L.). Mol Breeding, 26, 393–408. https://doi.org/10.1007/s11032-009-9327-2
95. Versteeg, M.N., & Koudokpon, V. (1993). Participative farmer testing of four low external input technologies, to address soil fertility decline in Mono province (Benin). Agricultural systems, 42(3), 265–276. https://doi.org/10.1016/0308-521X(93)90058-A
96. Wambua, J.M. (2021). Analysis of factors influencing productivity and extent of Smallholder commercialization of green grams and pigeon peas in Machakos county, Kenya. PhD Thesis, Egerton University, Kenya. http://ir-library.egerton.ac.ke/handle/123456789/2727
97. Wang, Z., Bao, X., Li, X., Jin, X., Zhao, J., Sun, J., Christie, P., & Li, L. (2015). Intercropping maintains soil fertility in terms of chemical properties and enzyme activities on a timescale of one decade. Plant and Soil, 391, 265–282. https://doi.org/10.1007/s11104-015-2428-2
98. Weih, M., Westerbergh, A., & Lundquist, P.-O. (2017). Role of nutrient-efficient plants for improving crop yields: bridging plant ecology, physiology, and molecular biology. In : M.A. Hossain, T. Kamiya, D.J. Burritt, L.S.P. Tran, T. Fujiwara (Eds), Plant Macronutrient Use Efficiency: Molecular and Genomic Perspectives in Crop Plants (pp. 31-44). Academic Press Ltd-Elsevier Science Ltd, London. https://doi.org/10.1016/B978-0-12-811308-0.00002-8
99. Yabi, J.A., Bachabi, F.X., Labiyi, I.A., Ode, C.A., & Ayena, R.L. (2016). Déterminants socio-économiques de l’adoption des pratiques culturales de gestion de la fertilité des sols utilisées dans la commune de Ouaké au Nord- Ouest du Bénin. International Journal of Biological and Chemical Sciences, 10(2), 779–792. https://doi.org/10.4314/ijbcs.v10i2.27
100. Yabi, J.A., Paraïso, A., Yegbemey, R.N., & Chanou, P. (2012). Rentabilité économique des systèmes rizicoles de la commune de Malanville au Nord-est du Benin. Bulletin de la Recherche Agronomique du Bénin (BRAB) Numéro spécial Productions Végétales & Animales et Economie & Sociologie Rurales, 12(1), 91-106.
101. Zalkuw, J., Singh, R., Pardhi, R., Gangwar, A. (2014). Analysis of technical efficiency of tomato production in Adamawa State, Nigeria. International Journal of Agriculture, Environment and Biotechnology, 7(3), 645-650. http://dx.doi.org/10.5958/2230-732X.2014.01371.0
102. Zavinon, F., Adoukonou-Sagbadja, H., Ahoton, L., Vodouhe, R.S., & Ahanhanzo, C. (2018). Quantitative Analysis, Distribution and traditional management of pigeon pea [Cajanus cajan (L.) Millsp.] Landraces’ diversity in Southern Benin. European Scientific Journal, 14(9), 184–211. https://hdl.handle.net/10568/96897
103. Zavinon, F., Adoukonou-Sagbadja, H., Bossikponnon, A., Dossa, H., & Ahanhanzo, C. (2019). Phenotypic diversity for agro-morphological traits in pigeon pea landraces [(Cajanus cajan L.) Millsp.] cultivated in southern Benin. Open Agriculture, 4(1), 487–499. https://doi.org/10.1515/opag-2019-0046
104. Zavinon, F., Adoukonou-Sagbadja, H., Keilwagen, J., Lehnert, H., Ordon, F., & Perovic, D. (2020). Genetic diversity and population structure in Beninese pigeon pea [Cajanus cajan (L.) Huth] landraces collection revealed by SSR and genome wide SNP markers. Genetic Resources and Crop Evolution, 67, 191–208. https://doi.org/10.1007/s10722-019-00864-9
105. Zavinon, F., Fonhan, N., Atrokpo, A., Djossou, R., & Sagbadja, H.A. (2022). Genotype x Environment Interaction and Agronomic Performances Analysis in Exotic Pigeon Pea (Cajanus cajan L. Millsp) Cultivars in Benin. International Journal of Applied Agricultural Sciences, 8(6), 251–258. https://doi.org/10.11648/j.ijaas.20220806.18
106. Zavinon, F., & Sagbadja, H.A. (2019). Pigeon pea [Cajanus cajan (L.) Millsp] cultivation, its major constraints and ethnobotanical status in Southern Benin. Journal of Agricultural and Crop Research, 7(6), 95–105. https://doi.org/10.33495/jacr_v7i6.19.131
107. Zhang, Y., Liu, J., Zhang, J., Liu, H., Liu, S., Zhai, L., Wang, H., Lei, Q., Ren, T., & Yin, C. (2015). Row ratios of intercropping maize and soybean can affect agronomic efficiency of the system and subsequent wheat. Plos One, 10(6), e0129245. https://doi.org/10.1371/journal.pone.0129245
Copyright (c) 2024 Kassimou Issaka, Ibidon Firmin Akpo, Filikibirou Tassou Zakari, Zachée Houessingbe, Nouroudine Ollabode, Afouda Jacob Yabi
This work is licensed under a Creative Commons Attribution 4.0 International License.